
MATLAB®

App Building

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® App Building
© COPYRIGHT 2000–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2000 Online Only New for MATLAB 6.0 (Release 12)
June 2001 Online Only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online Only Revised for MATLAB 6.6 (Release 13)
June 2004 Online Only Revised for MATLAB 7.0 (Release 14)
October 2004 Online Only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online Only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online Only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online Only Revised for MATLAB 7.2 (Release 2006a)
May 2006 Online Only Revised for MATLAB 7.2
September 2006 Online Only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online Only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online Only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online Only Revised for MATLAB 7.6 (Release 2008a)
October 2008 Online Only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online Only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online Only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online Only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online Only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online Only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online Only Revised for MATLAB 7.13 (Release 2011b)
March 2012 Online Only Revised for MATLAB 7.14 (Release 2012a)
September 2012 Online Only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online Only Revised for MATLAB 8.1 (Release 2013a)
September 2013 Online Only Revised for MATLAB 8.2 (Release 2013b)
March 2014 Online Only Revised for MATLAB 8.3 (Release 2014a)
October 2014 Online Only Revised for MATLAB 8.4 (Release 2014b)
March 2015 Online Only Revised for MATLAB 8.5 (Release 2015a)
September 2015 Online Only Revised for MATLAB 8.6 (Release 2015b)
March 2016 Online Only Revised for MATLAB 9.0 (Release 2016a)
September 2016 Online Only Revised for MATLAB 9.1 (Release 2016b)
March 2017 Online Only Revised for MATLAB 9.2 (Release 2017a)
September 2017 Online Only Revised for MATLAB 9.3 (Release 2017b)
March 2018 Online Only Revised for MATLAB 9.4 (Release 2018a)
September 2018 Online Only Revised for MATLAB 9.5 (Release 2018b)
March 2019 Online Only Revised for MATLAB 9.6 (Release 2019a)

Introduction to Creating UIs

About Apps in MATLAB Software
1

Ways to Build Apps . 1-2
Use App Designer . 1-2
Use GUIDE . 1-3
Use MATLAB Functions to Create Apps Programmatically

. 1-4

How to Create a App with GUIDE
2

Create a Simple App Using GUIDE 2-2
Open a New UI in the GUIDE Layout Editor 2-3
Set the Window Size in GUIDE . 2-5
Layout the UI . 2-6
Code the Behavior of the App . 2-16
Run the App . 2-22

Files Generated by GUIDE . 2-24
Code Files and FIG-Files . 2-24
Code File Structure . 2-24
Adding Callback Templates to an Existing Code File . . . 2-25
About GUIDE-Generated Callbacks 2-26

v

Contents

A Simple Programmatic App
3

Create a Simple App Programmatically 3-2
Create a Code File . 3-3
Create the Figure Window . 3-3
Add Components to the UI . 3-4
Code the App’s Behavior . 3-7
Verify Code and Run the App . 3-10

Create UIs with GUIDE

What Is GUIDE?
4

GUIDE: Getting Started . 4-2
UI Layout . 4-2
UI Programming . 4-2

GUIDE Preferences and Options
5

GUIDE Preferences . 5-2
Set Preferences . 5-2
Confirmation Preferences . 5-2
Backward Compatibility Preference 5-4
All Other Preferences . 5-5

GUIDE Options . 5-10
The GUI Options Dialog Box . 5-10
Resize Behavior . 5-11
Command-Line Accessibility . 5-11
Generate FIG-File and MATLAB File 5-12
Generate FIG-File Only . 5-14

vi Contents

Lay Out a UI Using GUIDE
6

GUIDE Templates . 6-2
Access the Templates . 6-2
Template Descriptions . 6-3

Set the UI Window Size in GUIDE 6-10
Prevent Existing Objects from Resizing with the Window

. 6-10
Set the Window Position or Size to an Exact Value 6-11
Maximize the Layout Area . 6-11

Add Components to the GUIDE Layout Area 6-12
Place Components . 6-12
User Interface Controls . 6-18
Panels and Button Groups . 6-39
Axes . 6-44
Table . 6-48
ActiveX Component . 6-59
Resize GUIDE UI Components 6-61

Align GUIDE UI Components . 6-65
Align Objects Tool . 6-65
Property Inspector . 6-68
Grid and Rulers . 6-71
Guide Lines . 6-72

Customize Tabbing Behavior in a GUIDE UI 6-74

Create Menus for GUIDE Apps . 6-77
Menus for the Menu Bar . 6-77
Context Menus . 6-87

Create Toolbars for GUIDE UIs . 6-94
Toolbar and Tools . 6-94
Editing Tool Icons . 6-102

Design Cross-Platform UIs in GUIDE 6-106
Default System Font . 6-106
Standard Background Color . 6-107
Cross-Platform Compatible Units 6-107

vii

Programming a GUIDE App
7

Write Callbacks in GUIDE . 7-2
Callbacks for Different User Actions 7-2
GUIDE-Generated Callback Functions and Property Values

. 7-4
GUIDE Callback Syntax . 7-5
Renaming and Removing GUIDE-Generated Callbacks . . 7-6

Initialize UI Components in GUIDE Apps 7-8
Opening Function . 7-8
Output Function . 7-10

Callbacks for Specific Components 7-12
How to Use the Example Code 7-12
Push Button . 7-12
Toggle Button . 7-13
Radio Button . 7-13
Check Box . 7-14
Edit Text Field . 7-15
Slider . 7-16
List Box . 7-16
Pop-Up Menu . 7-18
Panel . 7-20
Button Group . 7-21
Menu Item . 7-22
Table . 7-25
Axes . 7-26

Examples of GUIDE Apps . 7-29

Examples of GUIDE UIs
8

Modal Dialog Box in GUIDE . 8-2
Create the Dialog Box . 8-2
Create the Program That Opens the Dialog Box 8-3
Run the Program . 8-5

viii Contents

GUIDE App With Parameters for Displaying Plots 8-7
Open and Run the Example . 8-7
Examine the Code . 8-8

GUIDE App Containing Tables and Plots 8-11
Open and Run the Example . 8-11
Examine the Code . 8-12

Interactive List Box App in GUIDE 8-15
Open and Run The Example . 8-15
Examine the Layout and Callback Code 8-17

Plot Workspace Variables in a GUIDE App 8-20
Open and Run the App . 8-20
Examine the Code . 8-21

Automatically Refresh Plot in a GUIDE App 8-23
Open and Run the Example . 8-23
Examine the Code . 8-24

Create UIs Programmatically

Lay Out a Programmatic UI
9

Structure of Programmatic App Code Files 9-2
File Organization . 9-2
File Template . 9-2
Run the Program . 9-3

Add Components to a Programmatic App 9-4
User Interface Controls . 9-4
Tables . 9-15
Panels . 9-16
Button Groups . 9-18
Axes . 9-20
ActiveX Controls . 9-22
How to Set Font Characteristics 9-22

ix

Lay Out a UI Programmatically . 9-25
Component Placement and Sizing 9-25
Managing the Layout in Resizable UIs 9-30
Manage the Stacking Order of Grouped Components . . 9-33

Customize Tabbing Behavior in a Programmatic App . . 9-34
How Tabbing Works . 9-34
Default Tab Order . 9-34
Change the Tab Order in the uipanel 9-36

Create Menus for Programmatic Apps 9-38
Add Menu Bar Menus . 9-38
Add Context Menus to a Programmatic App 9-46

Create Toolbars for Programmatic Apps 9-51
Use the uitoolbar Function . 9-51
Commonly Used Properties . 9-51
Toolbars . 9-52
Display and Modify the Standard Toolbar 9-55

DPI-Aware Behavior in MATLAB 9-58
Visual Appearance . 9-58
Using Object Properties . 9-60
Using print, getframe, and publish Functions 9-61

Code a Programmatic App
10

Initialize a Programmatic App . 10-2
Examples . 10-2

Write Callbacks for Apps Created Programmatically . . . 10-5
Callbacks for Different User Actions 10-5
How to Specify Callback Property Values 10-7

x Contents

Manage Application-Defined Data
11

Share Data Among Callbacks . 11-2
Overview of Data Sharing Techniques 11-2
Store Data in UserData or Other Object Properties 11-3
Store Data as Application Data 11-8
Create Nested Callback Functions (Programmatic Apps)

. 11-12
Store Data Using the guidata Function 11-13
GUIDE Example: Share Slider Data Using guidata . . . 11-16
GUIDE Example: Share Data Between Two Apps 11-16
GUIDE Example: Share Data Among Three Apps 11-17

Manage Callback Execution
12

Interrupt Callback Execution . 12-2
How to Control Interruption . 12-2
Callback Behavior When Interruption is Allowed 12-2
Example . 12-3

Examples of Programmatic Apps
13

Programmatic App that Displays a Table 13-2

xi

App Designer

App Designer Basics
14

Create and Run a Simple App Using App Designer 14-2
Run the Tutorial . 14-2
Tutorial Steps for Creating the App 14-2

Migrating GUIDE Apps to App Designer 14-6
Features of the Migration Tool 14-6
Aids for Migrating GUIDE Code to App Designer 14-7

Displaying Graphics in App Designer 14-10
Calling Graphics Functions . 14-10
Displaying Plots Using Other Types of Axes 14-11
Unsupported Functionality . 14-12

App Designer Preferences . 14-15

Component Choices and Customizations
15

App Designer Components . 15-2
Common Components . 15-3
Containers and Figure Tools . 15-6
Instrumentation . 15-8
Toolbox Components . 15-10

Table Array Data Types in App Designer Apps 15-11
Logical Data . 15-11
Categorical Data . 15-12
Datetime Data . 15-12
Duration Data . 15-13
Nonscalar Data . 15-14
Missing Data Values . 15-15
Example: App that Displays a Table Array 15-16

xii Contents

Add UI Components to App Designer Programmatically
. 15-18

Create the Component and Assign the Callback 15-18
Write the Callback . 15-19
Example: Confirmation Dialog Box with a Close Function

. 15-19
Example: App that Populates Tree Nodes Based on a Data

File . 15-20

App Layout
16

Lay Out Apps in App Designer . 16-2
Customizing Components . 16-3
Aligning and Spacing Components 16-5
Grouping Components . 16-7
Arranging Components in Containers 16-7

Managing Resizable Apps in App Designer 16-9
Resizing Components with Normalized Position Units

. 16-9
Disabling Automatic Resizing 16-10
Customizing Resize Behavior Using a SizeChangedFcn

Callback . 16-11

Using Grid Layout Managers . 16-12
Example: Hide Rows Based on Run-Time Conditions . . 16-16

Apps with Auto-Reflow . 16-19
Auto-Reflow Behavior . 16-19
Example: Using Apps with Auto-Reflow 16-21

App Programming
17

Managing Code in App Designer Code View 17-2
Managing Components, Functions, and Properties 17-2

xiii

Identifying Editable Sections of Code 17-3
Programming Your App . 17-4
Fixing Coding Problems and Run-Time Errors 17-7

Startup Tasks and Input Arguments in App Designer . . 17-8
Create a StartupFcn Callback . 17-8
Define Input App Arguments . 17-9

Creating Multiwindow Apps in App Designer 17-12
Overview of the Process . 17-12
Send Information to the Dialog Box 17-13
Return Information to the Main App 17-14
Manage Windows When They Close 17-15
Example: Plotting App That Opens a Dialog Box 17-16

Write Callbacks in App Designer 17-18
Create a Callback Function . 17-18
Using Callback Function Input Arguments 17-21
Searching for Callbacks in Your Code 17-22
Deleting Callbacks . 17-22
Example: App with a Slider Callback 17-23

Create Helper Functions in App Designer 17-25
Create a Helper Function . 17-25
Managing Helper Functions . 17-26
Example: Helper Function that Initializes Plots and

Displays Updated Data . 17-27

Share Data Within App Designer Apps 17-29
Example: Share Plot Data and a Drop-Down List Selection

. 17-31

Compatibility Between Different Releases of App Designer
. 17-33

Save Copy As Versus Save As 17-34
Opening Apps for Editing in a Newer Release 17-34

Use One Callback for Multiple App Designer Components
. 17-36

Example of a Shared Callback 17-36
Change or Disconnect a Callback 17-38

xiv Contents

App Designer Examples
18

App that Calculates and Plots Data Based on Numerical
Input . 18-2

App with Auto-Reflow that Updates Plot Based on User
Selections . 18-4

App that Uses Grid Layout to Manage Component
Positions and Resizing . 18-6

App That Displays Data in a Hierarchy Using Tree 18-8

Create App that Uses Multiple Axes to Display Results of
Image Analysis . 18-10

Create Polar Axes Programmatically in an App 18-12

Create App with a Table That Can Be Sorted and Edited
Interactively . 18-14

Create App with Timer Object Configured
Programmatically . 18-16

Create App with Timer Object that Queries Website Data
. 18-18

Share Data in Multiwindow Apps 18-20

Keyboard Shortcuts
19

App Designer Keyboard Shortcuts 19-2
Shortcuts Available Throughout App Designer 19-2
Component Browser Shortcuts 19-2
Design View Shortcuts . 19-3
Code View Shortcuts . 19-8

xv

App Packaging

Packaging GUIs as Apps
20

Apps Overview . 20-2
What Is an App? . 20-2
Where to Get Apps . 20-2
Why Create an App? . 20-3
Best Practices and Requirements for Creating an App

. 20-4

Package Apps From the MATLAB Toolstrip 20-5

Package Apps in App Designer . 20-8

Modify Apps . 20-11

Ways to Share Apps . 20-13
Share MATLAB Files Directly 20-13
Package Your App . 20-14
Create a Deployed Web App . 20-15
Create a Standalone Desktop Application 20-16

MATLAB App Installer File — mlappinstall 20-17

Dependency Analysis . 20-18

xvi Contents

Introduction to Creating UIs

17

About Apps in MATLAB Software

1

Ways to Build Apps
There are different ways to build MATLAB apps:

• “Use App Designer” on page 1-2
• “Use GUIDE” on page 1-3
• “Use MATLAB Functions to Create Apps Programmatically” on page 1-4

Each of these approaches offers a different workflow and a slightly different set of
functionality. The best choice for you depends on your project requirements and how you
prefer to work.

Use App Designer
App Designer is a rich drag-and-drop environment introduced in R2016a, and it is the
recommended environment for building apps. It includes a fully integrated version of the
MATLAB editor. The layout and code views are tightly linked so that changes you make in
one view immediately affect the other. A larger set of interactive controls is available,
including gauges, lamps, knobs, and switches. Most graphics functionality is supported.

1 About Apps in MATLAB Software

1-2

Use GUIDE
GUIDE is a drag-and-drop environment for laying out user interfaces (UIs). You code the
interactive behavior of your app separately, in the MATLAB editor. Apps created with
GUIDE are compatible with almost all other releases, and they support all the graphics
functionality in MATLAB.

 Ways to Build Apps

1-3

Use MATLAB Functions to Create Apps Programmatically
You can also code the layout and behavior of your app entirely using MATLAB functions.
In this approach, you create a traditional figure and place interactive components in that
figure programmatically. These apps support the same types of graphics and interactive
components that GUIDE supports, as well as tabbed panels.

1 About Apps in MATLAB Software

1-4

 Ways to Build Apps

1-5

See Also

Related Examples
• “Migrating GUIDE Apps to App Designer” on page 14-6
• “Create a Simple App Using GUIDE” on page 2-2
• “Create a Simple App Programmatically” on page 3-2
• “Create and Run a Simple App Using App Designer” on page 14-2
• “Displaying Graphics in App Designer” on page 14-10

1 About Apps in MATLAB Software

1-6

How to Create a App with GUIDE

2

Create a Simple App Using GUIDE

Note This topic applies to apps you create using GUIDE. For alternative ways to build
apps, see “Ways to Build Apps” on page 1-2.

This example shows how to use GUIDE to create an app that has a simple user interface
(UI), such as the one shown here.

Subsequent sections guide you through the process of creating this app.

If you only want to view and run the code that created this app, set your current folder to
one to which you have write access. Copy the example code and open it in the Editor by
issuing the following MATLAB commands:

copyfile(fullfile(docroot, 'techdoc','creating_guis',...
 'examples','simple_gui*.*')),fileattrib('simple_gui*.*', '+w');
guide simple_gui.fig;
edit simple_gui.m

Click the Run button to run the app.

2 How to Create a App with GUIDE

2-2

Open a New UI in the GUIDE Layout Editor
1 Start GUIDE by typing guide at the MATLAB prompt.

2 In the GUIDE Quick Start dialog box, select the Blank GUI (Default) template, and
then click OK.

 Create a Simple App Using GUIDE

2-3

3 Display the names of the components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.
c Click OK.

2 How to Create a App with GUIDE

2-4

Set the Window Size in GUIDE
Set the size of the window by resizing the grid area in the Layout Editor. Click the lower-
right corner and drag it until the canvas is approximately 3 inches high and 4 inches
wide. If necessary, make the canvas larger.

 Create a Simple App Using GUIDE

2-5

Layout the UI
Add, align, and label the components in the UI.

1 Add the three push buttons to the UI. Select the push button tool from the component
palette at the left side of the Layout Editor and drag it into the layout area. Create
three buttons, positioning them approximately as shown in the following figure.

2 How to Create a App with GUIDE

2-6

2 Add the remaining components to the UI.

• A static text area
• A pop-up menu
• An axes

Arrange the components as shown in the following figure. Resize the axes component
to approximately 2-by-2 inches.

 Create a Simple App Using GUIDE

2-7

Align the Components

If several components have the same parent, you can use the Alignment Tool to align
them to one another. To align the three push buttons:

1 Select all three push buttons by pressing Ctrl and clicking them.
2 Select Tools > Align Objects.
3 Make these settings in the Alignment Tool:

• Left-aligned in the horizontal direction.
• 20 pixels spacing between push buttons in the vertical direction.

2 How to Create a App with GUIDE

2-8

4 Click OK.

 Create a Simple App Using GUIDE

2-9

Label the Push Buttons

Each of the three push buttons specifies a plot type: surf, mesh, and contour. This section
shows you how to label the buttons with those options.

1 Select View > Property Inspector.

2 How to Create a App with GUIDE

2-10

2 In the layout area, click the top push button.

3 In the Property Inspector, select the String property, and then replace the existing
value with the word Surf.

4 Press the Enter key. The push button label changes to Surf.

 Create a Simple App Using GUIDE

2-11

5 Click each of the remaining push buttons in turn and repeat steps 3 and 4. Label the
middle push button Mesh, and the bottom button Contour.

List Pop-Up Menu Items

The pop-up menu provides a choice of three data sets: peaks, membrane, and sinc. These
data sets correspond to MATLAB functions of the same name. This section shows you how
to list those data sets as choices in the pop-menu.

1 In the layout area, click the pop-up menu.
2 In the Property Inspector, click the button next to String. The String dialog box

displays.

2 How to Create a App with GUIDE

2-12

3 Replace the existing text with the names of the three data sets: peaks, membrane,
and sinc. Press Enter to move to the next line.

4 When you finish editing the items, click OK.

The first item in your list, peaks, appears in the pop-up menu in the layout area.

Modify the Static Text

In this UI, the static text serves as a label for the pop-up menu. This section shows you
how to change the static text to read Select Data.

1 In the layout area, click the static text.
2 In the Property Inspector, click the button next to String. In the String dialog box

that displays, replace the existing text with the phrase Select Data.

 Create a Simple App Using GUIDE

2-13

3 Click OK.

The phrase Select Data appears in the static text component above the pop-up
menu.

Save the Layout

When you save a layout, GUIDE creates two files, a FIG-file and a code file. The FIG-file,
with extension .fig, is a binary file that contains a description of the layout. The code
file, with extension .m, contains MATLAB functions that control the app’s behavior.

1 Save and run your program by selecting Tools > Run.
2 GUIDE displays a dialog box displaying: “Activating will save changes to your figure

file and MATLAB code. Do you wish to continue?

Click Yes.

2 How to Create a App with GUIDE

2-14

3 GUIDE opens a Save As dialog box in your current folder and prompts you for a FIG-
file name.

4 Browse to any folder for which you have write privileges, and then enter the file
name simple_gui for the FIG-file. GUIDE saves both the FIG-file and the code file
using this name.

5 If the folder in which you save the files is not on the MATLAB path, GUIDE opens a
dialog box that allows you to change the current folder.

6 GUIDE saves the files simple_gui.fig and simple_gui.m, and then runs the
program. It also opens the code file in your default editor.

The app opens in a new window. Notice that the window lacks the standard menu bar
and toolbar that MATLAB figure windows display. You can add your own menus and
toolbar buttons with GUIDE, but by default a GUIDE app includes none of these
components.

When you run simple_gui, you can select a data set in the pop-up menu and click
the push buttons, but nothing happens. This is because the code file contains no
statements to service the pop-up menu and the buttons.

 Create a Simple App Using GUIDE

2-15

To run an app created with GUIDE without opening GUIDE, execute its code file by typing
its name.

 simple_gui

You can also use the run command with the code file, for example,

run simple_gui

Note Do not attempt to run your app by opening its FIG-file outside of GUIDE. If you do
so, the figure opens and appears ready to use, but the UI does not initialize and the
callbacks do not function.

Code the Behavior of the App
When you saved your layout in the previous section, “Save the Layout” on page 2-14,
GUIDE created two files: a FIG-file, simple_gui.fig, and a program file,
simple_gui.m. However, the app is not responsive because simple_gui.m does not
contain any statements that perform actions. This section shows you how to add code to
the file to make the app functional.

Generate Data to Plot

This section shows you how to generate the data to be plotted when the user clicks a
button. The opening function generates this data by calling MATLAB functions. The
opening function initializes the UI when it opens, and it is the first callback in every
GUIDE-generated code file.

In this example, you add code that creates three data sets to the opening function. The
code uses the MATLAB functions peaks, membrane, and sinc.

1 Display the opening function in the MATLAB Editor.

If the file simple_gui.m is not already open in the editor, open from the Layout
Editor by selecting View > Editor.

2 On the EDITOR tab, in the NAVIGATE section, click Go To, and then select
simple_gui_OpeningFcn.

The cursor moves to the opening function, which contains this code:
% --- Executes just before simple_gis made visible.
function simple_gui_OpeningFcn(hObject, eventdata, handles, varargin)

2 How to Create a App with GUIDE

2-16

% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to simple_g(see VARARGIN)

% Choose default command line output for simple_gui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes simple_gwait for user response (see UIRESUME)
% uiwait(handles.figure1);

3 Create data to plot by adding the following code to the opening function immediately
after the comment that begins % varargin...

% Create the data to plot.
handles.peaks=peaks(35);
handles.membrane=membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc = sin(r)./r;
handles.sinc = sinc;
% Set the current data value.
handles.current_data = handles.peaks;
surf(handles.current_data)

The first six executable lines create the data using the MATLAB functions peaks,
membrane, and sinc. They store the data in the handles structure, an argument
provided to all callbacks. Callbacks for the push buttons can retrieve the data from
the handles structure.

The last two lines create a current data value and set it to peaks, and then display the
surf plot for peaks. The following figure shows how the app looks when it first
displays.

 Create a Simple App Using GUIDE

2-17

Code Pop-Up Menu Behavior

The pop-up menu presents options for plotting the data. When the user selects one of the
three plots, MATLAB software sets the pop-up menu Value property to the index of the
selected menu item. The pop-up menu callback reads the pop-up menu Value property to
determine the item that the menu currently displays, and sets handles.current_data
accordingly.

1 Display the pop-up menu callback in the MATLAB Editor. In the GUIDE Layout Editor,
right-click the pop-up menu component, and then select View Callbacks >
Callback.

2 How to Create a App with GUIDE

2-18

GUIDE displays the code file in the Editor, and moves the cursor to the pop-menu
callback, which contains this code:

% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the popupmenu1_Callback after the comment that begins
% handles...

This code first retrieves two pop-up menu properties:

• String — a cell array that contains the menu contents

 Create a Simple App Using GUIDE

2-19

• Value — the index into the menu contents of the selected data set

The code then uses a switch statement to make the selected data set the current
data. The last statement saves the changes to the handles structure.

% Determine the selected data set.
str = get(hObject, 'String');
val = get(hObject,'Value');
% Set current data to the selected data set.
switch str{val};
case 'peaks' % User selects peaks.
 handles.current_data = handles.peaks;
case 'membrane' % User selects membrane.
 handles.current_data = handles.membrane;
case 'sinc' % User selects sinc.
 handles.current_data = handles.sinc;
end
% Save the handles structure.
guidata(hObject,handles)

Code Push Button Behavior

Each of the push buttons creates a different type of plot using the data specified by the
current selection in the pop-up menu. The push button callbacks get data from the
handles structure and then plot it.

1 Display the Surf push button callback in the MATLAB Editor. In the Layout Editor,
right-click the Surf push button, and then select View Callbacks > Callback.

2 How to Create a App with GUIDE

2-20

In the Editor, the cursor moves to the Surf push button callback in the code file,
which contains this code:

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the callback immediately after the comment that begins %
handles...

% Display surf plot of the currently selected data.
surf(handles.current_data);

3 Repeat steps 1 and 2 to add similar code to the Mesh and Contour push button
callbacks.

 Create a Simple App Using GUIDE

2-21

• Add this code to the Mesh push button callback, pushbutton2_Callback:

 % Display mesh plot of the currently selected data.
 mesh(handles.current_data);

• Add this code to the Contour push button callback, pushbutton3_Callback:

 % Display contour plot of the currently selected data.
 contour(handles.current_data);

4 Save your code by selecting File > Save.

Run the App
In “Code the Behavior of the App” on page 2-16, you programmed the pop-up menu and
the push buttons. You also created data for them to use and initialized the display. Now
you can run your program to see how it works.

1 Run your program from the Layout Editor by selecting Tools > Run.

2 In the pop-up menu, select Membrane, and then click the Mesh button. The app
displays a mesh plot of the MathWorks® L-shaped Membrane logo.

3 Try other combinations before closing the window.

2 How to Create a App with GUIDE

2-22

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Programmatically” on page 3-2
• “Create and Run a Simple App Using App Designer” on page 14-2

 See Also

2-23

Files Generated by GUIDE
In this section...
“Code Files and FIG-Files” on page 2-24
“Code File Structure” on page 2-24
“Adding Callback Templates to an Existing Code File” on page 2-25
“About GUIDE-Generated Callbacks” on page 2-26

Code Files and FIG-Files
By default, the first time you save or run your app, GUIDE save two files:

• A FIG-file, with extension .fig, that contains a complete description of the layout and
each component, such as push buttons, axes, panels, menus, and so on. The FIG-file is
a binary file and you cannot modify it except by changing the layout in GUIDE. FIG-
files are specializations of MAT-files. See “Custom Applications to Access MAT-Files”
for more information.

• A code file, with extension .m, that initially contains initialization code and templates
for some callbacks that control behavior. You generally add callbacks you write for
your components to this file. As the callbacks are functions, the code file can never be
a MATLAB script.

When you save your app for the first time, GUIDE automatically opens the code file in
your default editor.

The FIG-file and the code file must have the same name. These two files usually reside in
the same folder, and correspond to the tasks of laying out and programming the app.
When you lay out the app in the Layout Editor, your components and layout is stored in
the FIG-file. When you program the app, your code is stored in the corresponding code
file.

If your app includes ActiveX® components, GUIDE also generates a file for each ActiveX
component.

Code File Structure
The code file that GUIDE generates is a function file. The name of the main function is the
same as the name of the code file. For example, if the name of the code file is mygui.m,

2 How to Create a App with GUIDE

2-24

then the name of the main function is mygui. Each callback in the file is a local function
of that main function.

When GUIDE generates a code file, it automatically includes templates for the most
commonly used callbacks for each component. The code file also contains initialization
code, as well as an opening function callback and an output function callback. It is your
job to add code to the component callbacks for your app to work as you want. You can
also add code to the opening function callback and the output function callback. The code
file orders functions as shown in the following table.

Section Description
Comments Displayed at the command line in response to the help

command.
Initialization GUIDE initialization tasks. Do not edit this code.
Opening function Performs your initialization tasks before the user has access to

the UI.
Output function Returns outputs to the MATLAB command line after the opening

function returns control and before control returns to the
command line.

Component and figure
callbacks

Control the behavior of the window and of individual
components. MATLAB software calls a callback in response to a
particular event for a component or for the figure itself.

Utility/helper functions Perform miscellaneous functions not directly associated with an
event for the figure or a component.

Adding Callback Templates to an Existing Code File
When you save the app, GUIDE automatically adds templates for some callbacks to the
code file. If you want to add other callbacks to the file, you can easily do so.

Within GUIDE, you can add a local callback function template to the code in any of the
following ways. Select the component for which you want to add the callback, and then:

• Right-click the mouse button, and from the View callbacks submenu, select the
desired callback.

• From View > View Callbacks, select the desired callback.

 Files Generated by GUIDE

2-25

• Double-click a component to show its properties in the Property Inspector. In the

Property Inspector, click the pencil-and-paper icon next to the name of the
callback you want to install in the code file.

• For toolbar buttons, in the Toolbar Editor, click the View button next to Clicked
Callback (for Push Tool buttons) or On Callback, or Off Callback (for Toggle Tools).

When you perform any of these actions, GUIDE adds the callback template to the code
file, saves it, and opens it for editing at the callback you just added. If you select a
callback that currently exists in the code file, GUIDE adds no callback, but saves the file
and opens it for editing at the callback you select.

For more information, see “GUIDE-Generated Callback Functions and Property Values” on
page 7-4.

About GUIDE-Generated Callbacks
Callbacks created by GUIDE for components are similar to callbacks created
programmatically, with certain differences.

• GUIDE generates callbacks as function templates within the code file.

GUIDE names callbacks based on the callback type and the component Tag property.
For example, togglebutton1_Callback is such a default callback name. If you
change a component Tag, GUIDE renames all its callbacks in the code file to contain
the new tag. You can change the name of a callback, replace it with another function,
or remove it entirely using the Property Inspector.

• GUIDE provides three arguments on page 7-5 to callbacks, always named the same.
• You can append arguments to GUIDE-generated callbacks, but never alter or remove

the ones that GUIDE places there.
• You can rename a GUIDE-generated callback by editing its name or by changing the

component Tag.
• You can delete a callback from a component by clearing it from the Property Inspector;

this action does not remove anything from the code file.
• You can specify the same callback function for multiple components to enable them to

share code.

After you delete a component in GUIDE, all callbacks it had remain in the code file. If you
are sure that no other component uses the callbacks, you can then remove the callback

2 How to Create a App with GUIDE

2-26

code manually. For details, see “Renaming and Removing GUIDE-Generated Callbacks” on
page 7-6.

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2

 See Also

2-27

A Simple Programmatic App

3

Create a Simple App Programmatically

Note This topic applies to apps you create programmatically using the figure function.
For alternative ways to build apps, see “Ways to Build Apps” on page 1-2.

This example shows how to create a simple app programmatically, such as the one shown
here.

Subsequent sections guide you through the process of creating this app.

If you prefer to view and run the code that created this app without creating it, set your
current folder to one to which you have write access. Copy the example code and open it
in the Editor by issuing the following MATLAB commands:

copyfile(fullfile(docroot, 'techdoc','creating_guis',...
 'examples','simple_gui2*.*')), fileattrib('simple_gui2*.*', '+w');
edit simple_gui2.m

3 A Simple Programmatic App

3-2

Note This code uses dot notation to set graphics object properties. Dot notation runs in
R2014b and later. If you are using an earlier release, use the set function instead. For
example, change f.Visible = 'on' to set(f,'Visible','on').

To run the code, go to the Run section in the Editor tab. Then click Run .

Create a Code File
Create a function file (as opposed to a script file, which contains a sequence of MATLAB
commands but does not define functions).

1 At the MATLAB prompt, type edit.
2 Type the following statement in the first line of the Editor.

function simple_gui2

3 Following the function statement, type these comments, ending with a blank line.
(The comments display at the command line in response to the help command.)

% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.
(Leave a blank line here)

4 At the end of the file, after the blank line, add an end statement. This end statement
is required because the example uses nested functions. To learn more, see “Nested
Functions”.

5 Save the file in your current folder or at a location that is on your MATLAB path.

Create the Figure Window
To create a container for your app’s user interface (UI), add the following code before the
end statement in your file:

% Create and then hide the UI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

The call to the figure function creates a traditional figure and sets the following
properties:

 Create a Simple App Programmatically

3-3

• The Visible property is set to 'off' to make the window invisible as components
are added or initialized. The window becomes visible when the UI has all its
components and is initialized.

• The Position property is set to a four-element vector that specifies the location of
the UI on the screen and its size: [distance from left, distance from bottom, width,
height]. Default units are pixels.

Add Components to the UI
Create the push buttons, static text, pop-up menu, and axes components to the UI.

1 Following the call to figure, add these statements to your code file to create three
push button components.

% Construct the components.
hsurf = uicontrol('Style','pushbutton',...
 'String','Surf','Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton',...
 'String','Mesh','Position',[315,180,70,25]);
hcontour = uicontrol('Style','pushbutton',...
 'String','Contour','Position',[315,135,70,25]);

Each statement uses a series of uicontrol property/value pairs to define a push
button:

• The Style property specifies that the uicontrol is a push button.
• The String property specifies the label on each push button: Surf, Mesh, and

Contour.
• The Position property specifies the location and size of each push button:

[distance from left, distance from bottom, width, height]. Default units for push
buttons are pixels.

Each uicontrol call returns the handle of the push button created.
2 Add the pop-up menu and a text label by adding these statements to the code file

following the push button definitions. The first statement creates the label. The
second statement creates the popup menu.

htext = uicontrol('Style','text','String','Select Data',...
 'Position',[325,90,60,15]);
hpopup = uicontrol('Style','popupmenu',...

3 A Simple Programmatic App

3-4

 'String',{'Peaks','Membrane','Sinc'},...
 'Position',[300,50,100,25]);

The pop-up menu component String property uses a cell array to specify the three
items in the pop-up menu: Peaks, Membrane, and Sinc.

The text component, the String property specifies instructions for the user.

For both components, the Position property specifies the size and location of each
component: [distance from left, distance from bottom, width, height]. Default units
for these components are pixels.

3 Add the axes by adding this statement to the code file.

ha = axes('Units','pixels','Position',[50,60,200,185]);

The Units property specifies pixels so that the axes has the same units as the other
components.

4 Following all the component definitions, add this line to the code file to align all
components, except the axes, along their centers.

align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');
5 Add this command following the align command.

Note This code uses dot notation to set object properties. Dot notation runs in
R2014b and later. If you are using an earlier release, use the set function instead.
For example, change f.Visible = 'on' to set(f,'Visible','on').

f.Visible = 'on';

Your code file should look like this:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

 % Create and then hide the UI as it is being constructed.
 f = figure('Visible','off','Position',[360,500,450,285]);

 % Construct the components.
 hsurf = uicontrol('Style','pushbutton','String','Surf',...

 Create a Simple App Programmatically

3-5

 'Position',[315,220,70,25]);
 hmesh = uicontrol('Style','pushbutton','String','Mesh',...
 'Position',[315,180,70,25]);
 hcontour = uicontrol('Style','pushbutton',...
 'String','Contour',...
 'Position',[315,135,70,25]);
 htext = uicontrol('Style','text','String','Select Data',...
 'Position',[325,90,60,15]);
 hpopup = uicontrol('Style','popupmenu',...
 'String',{'Peaks','Membrane','Sinc'},...
 'Position',[300,50,100,25]);
 ha = axes('Units','Pixels','Position',[50,60,200,185]);
 align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

 % Make the UI visible.
 f.Visible = 'on';

end
6 Run your code by typing simple_gui2 at the command line. You can select a data

set in the pop-up menu and click the push buttons, but nothing happens. This is
because there is no callback code in the file to service the pop-up menu or the
buttons.

3 A Simple Programmatic App

3-6

Code the App’s Behavior
Program the Pop-Up Menu

The pop-up menu enables users to select the data to plot. When a user selects one of the
three data sets in the pop-up menu, MATLAB software sets the pop-up menu Value
property to the index of the selected menu item. The pop-up menu callback reads the pop-
up menu Value property to determine which item is currently displayed and sets
current_data accordingly.

Add the following callback to your file following the initialization code and before the final
end statement.

Note This code uses dot notation to get object properties. Dot notation runs in R2014b
and later. If you are using an earlier release, use the get function instead. For example,
change str = source.String to str = get(source,'String').

% Pop-up menu callback. Read the pop-up menu Value property to
% determine which item is currently displayed and make it the
% current data. This callback automatically has access to
% current_data because this function is nested at a lower level.
 function popup_menu_Callback(source,eventdata)
 % Determine the selected data set.
 str = source.String;
 val = source.Value;
 % Set current data to the selected data set.
 switch str{val};
 case 'Peaks' % User selects Peaks.
 current_data = peaks_data;
 case 'Membrane' % User selects Membrane.
 current_data = membrane_data;
 case 'Sinc' % User selects Sinc.
 current_data = sinc_data;
 end
 end

Program the Push Buttons

Each of the three push buttons creates a different type of plot using the data specified by
the current selection in the pop-up menu. The push button callbacks plot the data in
current_data. They automatically have access to current_data because they are
nested at a lower level.

Add the following callbacks to your file following the pop-up menu callback and before the
final end statement.

 Create a Simple App Programmatically

3-7

% Push button callbacks. Each callback plots current_data in the
% specified plot type.

function surfbutton_Callback(source,eventdata)
% Display surf plot of the currently selected data.
 surf(current_data);
end

function meshbutton_Callback(source,eventdata)
% Display mesh plot of the currently selected data.
 mesh(current_data);
end

function contourbutton_Callback(source,eventdata)
% Display contour plot of the currently selected data.
 contour(current_data);
end

Program the Callbacks

When the user selects a data set from the pop-up menu or clicks one of the push buttons,
MATLAB software executes the callback associated with that particular event. Use each
component's Callback property to specify the name of the callback with which each
event is associated.

1 To the uicontrol statement that defines the Surf push button, add the property/
value pair

'Callback',{@surfbutton_Callback}

so that the statement looks like this:

hsurf = uicontrol('Style','pushbutton','String','Surf',...
 'Position',[315,220,70,25],...
 'Callback',{@surfbutton_Callback});

Callback is the name of the property. surfbutton_Callback is the name of the
callback that services the Surf push button.

2 To the uicontrol statement that defines the Mesh push button, add the property/
value pair

'Callback',@meshbutton_Callback
3 To the uicontrol statement that defines the Contour push button, add the

property/value pair

3 A Simple Programmatic App

3-8

'Callback',@contourbutton_Callback
4 To the uicontrol statement that defines the pop-up menu, add the property/value

pair

'Callback',@popup_menu_Callback

For more information, see “Write Callbacks for Apps Created Programmatically” on page
10-5.

Initialize the UI

Initialize the UI, so it is ready when the window becomes visible. Make the UI behave
properly when it is resized by changing the component and figure units to normalized.
This causes the components to resize when the UI is resized. Normalized units map the
lower-left corner of the figure window to (0,0) and the upper-right corner to (1.0,
1.0).

Note This code uses dot notation to set object properties. Dot notation runs in R2014b
and later. If you are using an earlier release, use the set function instead. For example,
change f.Units = 'normalized' to set(f,'Units','normalized').

Replace this code in editor:

% Make the UI visible.
f.Visible = 'on';

with this code:

% Initialize the UI.
% Change units to normalized so components resize automatically.
f.Units = 'normalized';
ha.Units = 'normalized';
hsurf.Units = 'normalized';
hmesh.Units = 'normalized';
hcontour.Units = 'normalized';
htext.Units = 'normalized';
hpopup.Units = 'normalized';

% Generate the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);

 Create a Simple App Programmatically

3-9

r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Create a plot in the axes.
current_data = peaks_data;
surf(current_data);

% Assign a name to appear in the window title.
f.Name = 'Simple GUI';

% Move the window to the center of the screen.
movegui(f,'center')

% Make the UI visible.
f.Visible = 'on';

Verify Code and Run the App
Make sure your code appears as it should, and then run it.

Note This code uses dot notation to get and set object properties. Dot notation runs in
R2014b and later. If you are using an earlier release, use the get and set functions
instead. For example, change f.Units = 'normalized' to
set(f,'Units','normalized').

1 Verify that your code file looks like this:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and then hide the UI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components.
hsurf = uicontrol('Style','pushbutton',...
 'String','Surf','Position',[315,220,70,25],...
 'Callback',@surfbutton_Callback);
hmesh = uicontrol('Style','pushbutton',...
 'String','Mesh','Position',[315,180,70,25],...
 'Callback',@meshbutton_Callback);

3 A Simple Programmatic App

3-10

hcontour = uicontrol('Style','pushbutton',...
 'String','Contour','Position',[315,135,70,25],...
 'Callback',@contourbutton_Callback);
htext = uicontrol('Style','text','String','Select Data',...
 'Position',[325,90,60,15]);
hpopup = uicontrol('Style','popupmenu',...
 'String',{'Peaks','Membrane','Sinc'},...
 'Position',[300,50,100,25],...
 'Callback',@popup_menu_Callback);
ha = axes('Units','pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

% Initialize the UI.
% Change units to normalized so components resize automatically.
f.Units = 'normalized';
ha.Units = 'normalized';
hsurf.Units = 'normalized';
hmesh.Units = 'normalized';
hcontour.Units = 'normalized';
htext.Units = 'normalized';
hpopup.Units = 'normalized';

% Generate the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Create a plot in the axes.
current_data = peaks_data;
surf(current_data);

% Assign the a name to appear in the window title.
f.Name = 'Simple GUI';

% Move the window to the center of the screen.
movegui(f,'center')

% Make the window visible.
f.Visible = 'on';

% Pop-up menu callback. Read the pop-up menu Value property to
% determine which item is currently displayed and make it the

 Create a Simple App Programmatically

3-11

% current data. This callback automatically has access to
% current_data because this function is nested at a lower level.
 function popup_menu_Callback(source,eventdata)
 % Determine the selected data set.
 str = get(source, 'String');
 val = get(source,'Value');
 % Set current data to the selected data set.
 switch str{val};
 case 'Peaks' % User selects Peaks.
 current_data = peaks_data;
 case 'Membrane' % User selects Membrane.
 current_data = membrane_data;
 case 'Sinc' % User selects Sinc.
 current_data = sinc_data;
 end
 end

 % Push button callbacks. Each callback plots current_data in the
 % specified plot type.

 function surfbutton_Callback(source,eventdata)
 % Display surf plot of the currently selected data.
 surf(current_data);
 end

 function meshbutton_Callback(source,eventdata)
 % Display mesh plot of the currently selected data.
 mesh(current_data);
 end

 function contourbutton_Callback(source,eventdata)
 % Display contour plot of the currently selected data.
 contour(current_data);
 end
end

2 Run your app by typing simple_gui2 at the command line. The initialization code
causes it to display the default peaks data with the surf function, making the UI
look like this.

3 A Simple Programmatic App

3-12

3 In the pop-up menu, select Membrane, and then click the Mesh button. The UI
displays a mesh plot of the MathWorks L-shaped Membrane logo.

4 Try other combinations before closing the UI.
5 Type help simple_gui2 at the command line. MATLAB software displays the help

text.

help simple_gui2
 SIMPLE_GUI2 Select a data set from the pop-up menu, then
 click one of the plot-type push buttons. Clicking the button
 plots the selected data in the axes.

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Using GUIDE” on page 2-2
• “Create and Run a Simple App Using App Designer” on page 14-2

 See Also

3-13

Create UIs with GUIDE

15

What Is GUIDE?

4

GUIDE: Getting Started
In this section...
“UI Layout” on page 4-2
“UI Programming” on page 4-2

UI Layout
GUIDE is a development environment that provides a set of tools for creating user
interfaces (UIs). These tools simplify the process of laying out and programming UIs.

Using the GUIDE Layout Editor, you can populate a UI by clicking and dragging UI
components—such as axes, panels, buttons, text fields, sliders, and so on—into the layout
area. You also can create menus and context menus for the UI. From the Layout Editor,
you can size the UI, modify component look and feel, align components, set tab order,
view a hierarchical list of the component objects, and set UI options.

UI Programming
GUIDE automatically generates a program file containing MATLAB functions that controls
how the UI behaves. This code file provides code to initialize the UI, and it contains a
framework for the UI callbacks. Callbacks are functions that execute when the user
interacts with a UI component. Use the MATLAB Editor to add code to these callbacks.

Note MATLAB software provides a selection of standard dialog boxes that you can create
with a single function call. For an example, see the documentation for msgbox, which also
provides links to functions that create specialized predefined dialog boxes.

4 What Is GUIDE?

4-2

GUIDE Preferences and Options

• “GUIDE Preferences” on page 5-2
• “GUIDE Options” on page 5-10

5

GUIDE Preferences
In this section...
“Set Preferences” on page 5-2
“Confirmation Preferences” on page 5-2
“Backward Compatibility Preference” on page 5-4
“All Other Preferences” on page 5-5

Set Preferences
You can set preferences for GUIDE. From the MATLAB Home tab, in the Environment
section, click Preferences. These preferences apply to GUIDE and to all UIs you create.

The preferences are in different locations within the Preferences dialog box:

Confirmation Preferences
GUIDE provides two confirmation preferences. You can choose whether you want to
display a confirmation dialog box when you

• Activate a UI from GUIDE.
• Export a UI from GUIDE.
• Change a callback signature generated by GUIDE.

In the Preferences dialog box, click MATLAB > General > Confirmation Dialogs to
access the GUIDE confirmation preferences. Look for the word GUIDE in the Tool column.

5 GUIDE Preferences and Options

5-2

Prompt to Save on Activate

When you activate a UI from the Layout Editor by clicking the Run button , a dialog box
informs you of the impending save and lets you choose whether or not you want to
continue.

 GUIDE Preferences

5-3

Prompt to Save on Export

From the Layout Editor, when you select File > Export to MATLAB-file, a dialog box
informs you of the impending save and lets you choose whether or not you want to
continue.

Backward Compatibility Preference
MATLAB Version 5 or Later Compatibility

UI FIG-files created or modified with MATLAB 7.0 or a later version are not automatically
compatible with Version 6.5 and earlier versions. GUIDE automatically generates FIG-
files, which are binary files that contain the UI layout information.

5 GUIDE Preferences and Options

5-4

To make a FIG-file backward compatible, from the Layout Editor, select File >
Preferences > General > MAT-Files, and then select MATLAB Version 5 or later
(save -v6).

Note The -v6 option discussed in this section is obsolete and will be removed in a future
version of MATLAB.

All Other Preferences
GUIDE provides other preferences, for the Layout Editor interface and for inserting code
comments. In the Preferences dialog box, click GUIDE to access these preferences.

 GUIDE Preferences

5-5

The following topics describe the preferences in this dialog:

• “Show Names in Component Palette” on page 5-6
• “Show File Extension in Window Title” on page 5-7
• “Show File Path in Window Title” on page 5-7
• “Add Comments for Newly Generated Callback Functions” on page 5-7
• “Show App Designer Message Panel” on page 5-7

Show Names in Component Palette

Displays both icons and names in the component palette, as shown below. When
unchecked, the icons alone are displayed in two columns, with tooltips.

5 GUIDE Preferences and Options

5-6

Show File Extension in Window Title

Displays the FIG-file file name with its file extension, .fig, in the Layout Editor window
title. If unchecked, only the file name is displayed.

Show File Path in Window Title

Displays the full file path in the Layout Editor window title. If unchecked, the file path is
not displayed.

Add Comments for Newly Generated Callback Functions

Callbacks are blocks of code that execute in response to actions by the user, such as
clicking buttons or manipulating sliders. By default, GUIDE sets up templates that declare
callbacks as functions and adds comments at the beginning of each one. Most of the
comments are similar to the following.
% --- Executes during object deletion, before destroying properties.
function figure1_DeleteFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Some callbacks are added automatically because their associated components are part of
the original GUIDE template that you chose. Other commonly used callbacks are added
automatically when you add components. You can also add callbacks explicitly by
selecting them from View > View Callbacks menu or on the component's context menu.

If you deselect this preference, GUIDE includes comments only for callbacks that are
automatically included to support the original GUIDE template. GUIDE does not include
comments for callbacks subsequently added to the code.

See “Write Callbacks in GUIDE” on page 7-2 for more information about callbacks and
about the arguments described in the preceding comments.

Show App Designer Message Panel

Displays the App Designer message panel in the GUIDE Layout Editor. App Designer is
the recommended environment for building apps in MATLAB. The message panel provides
links and tools to help you learn more about App Designer.

 GUIDE Preferences

5-7

From the panel you can:

• Watch a 5-minute overview of the App Designer development environment.
• Learn more about the feature differences between GUIDE and App Designer.
• Open App Designer.
• Migrate your existing GUIDE app to App Designer using the GUIDE to App Designer

Migration Tool.

When this preference is cleared, the message panel does not appear in the Layout Editor.

5 GUIDE Preferences and Options

5-8

See Also

Related Examples
• “GUIDE Options” on page 5-10
• “Migrating GUIDE Apps to App Designer” on page 14-6

 See Also

5-9

GUIDE Options
In this section...
“The GUI Options Dialog Box” on page 5-10
“Resize Behavior” on page 5-11
“Command-Line Accessibility” on page 5-11
“Generate FIG-File and MATLAB File” on page 5-12
“Generate FIG-File Only” on page 5-14

The GUI Options Dialog Box
Access the dialog box from the GUIDE Layout Editor by selecting Tools > GUI Options.
The options you select take effect the next time you save your UI.

5 GUIDE Preferences and Options

5-10

Resize Behavior
You can control whether users can resize the window and how MATLAB handles resizing.
GUIDE provides three options:

• Non-resizable — Users cannot change the window size (default).
• Proportional — The software automatically scales the components in the UI in

proportion to the new figure window size.
• Other (Use SizeChangedFcn) — Program the UI to behave in a certain way when

users resize the figure window.

The first two options set figure and component properties appropriately and require no
other action. Other (Use SizeChangedFcn) requires you to write a callback routine that
recalculates sizes and positions of the components based on the new figure size.

Command-Line Accessibility
You can restrict access to a figure window from the command line or from a code file with
the GUIDE Command-line accessibility options.

Unless you explicitly specify a figure handle, many commands, such as plot, alter the
current figure (the figure specified by the root CurrentFigure property and returned by
the gcf command). The current figure is usually the figure that is most recently created,
drawn into, or mouse-clicked. You can programmatically designate a figure h (where h is
its handle) as the current figure in four ways:

1 set(groot,'CurrentFigure',h) — Makes figure h current, but does not change
its visibility or stacking with respect to other figures

2 figure(h) — Makes figure h current, visible, and displayed on top of other figures
3 axes(h) — Makes existing axes h the current axes and displays the figure containing

it on top of other figures
4 plot(h,...), or any plotting function that takes an axes as its first argument, also

makes existing axes h the current axes and displays the figure containing it on top of
other figures

The gcf function returns the handle of the current figure.

h = gcf

 GUIDE Options

5-11

For a UI created in GUIDE, set the Command-line accessibility option to prevent users
from inadvertently changing the appearance or content of a UI by executing commands at
the command line or from a script or function, such as plot. The following table briefly
describes the four options for Command-line accessibility.

Option Description
Callback (GUI becomes Current Figure
within Callbacks)

The UI can be accessed only from within a
callback. The UI cannot be accessed from
the command line or from a script. This is
the default.

Off (GUI never becomes Current
Figure)

The UI cannot be accessed from a callback,
the command line, or a script, without the
handle.

On (GUI may become Current Figure
from Command Line)

The UI can be accessed from a callback,
from the command line, and from a script.

Other (Use settings from Property
Inspector)

You control accessibility by setting the
HandleVisibility and IntegerHandle
properties from the Property Inspector.

Generate FIG-File and MATLAB File
Select Generate FIG-file and MATLAB file in the GUI Options dialog box if you want
GUIDE to create both the FIG-file and the UI code file (this is the default). Once you have
selected this option, you can select any of the following items in the frame to configure UI
code:

• “Generate Callback Function Prototypes” on page 5-12
• “GUI Allows Only One Instance to Run (Singleton)” on page 5-13
• “Use System Color Scheme for Background” on page 5-13

See “Files Generated by GUIDE” on page 2-24 for information about these files.

Generate Callback Function Prototypes

If you select Generate callback function prototypes in the GUI Options dialog,
GUIDE adds templates for the most commonly used callbacks to the code file for most
components. You must then insert code into these templates.

5 GUIDE Preferences and Options

5-12

GUIDE also adds a callback whenever you edit a callback routine from the Layout Editor's
right-click context menu and when you add menus to the UI using the Menu Editor on
page 6-77.

See “Write Callbacks in GUIDE” on page 7-2 for general information about callbacks.

Note This option is available only if you first select the Generate FIG-file and MATLAB
file option.

GUI Allows Only One Instance to Run (Singleton)

This option allows you to select between two behaviors for the figure window:

• Allow MATLAB software to display only one instance of the UI at a time.
• Allow MATLAB software to display multiple instances of the UI.

If you allow only one instance, the software reuses the existing figure whenever the
command to run your program is executed. If a UI window already exists, the software
brings it to the foreground rather than creating a new figure.

If you clear this option, the software creates a new figure whenever you issue the
command to run the program.

Even if you allow only one instance of a UI to exist, initialization can take place each time
you invoke it from the command line. For example, the code in an OpeningFcn will run
each time a GUIDE program runs unless you take steps to prevent it from doing so.
Adding a flag to the handles structure is one way to control such behavior. You can do
this in the OpeningFcn, which can run initialization code if this flag doesn't yet exist and
skip that code if it does.

Note This option is available only if you first select the Generate FIG-file and MATLAB
file option.

Use System Color Scheme for Background

The default color used for UI components is system dependent. This option enables you to
make the figure background color the same as the default component background color.

 GUIDE Options

5-13

To ensure that the figure background matches the color of the components, select Use
system color scheme for background in the GUI Options dialog.

Note This option is available only if you first select the Generate FIG-file and MATLAB
file option.

Generate FIG-File Only
The Generate FIG-file only option enables you to open figures and UIs to perform
limited editing. These can be any figures and need not be UIs. UIs need not have been
generated using GUIDE. This mode provides limited editing capability and may be useful
for UIs generated in MATLAB Versions 5.3 and earlier. See the guide function for more
information.

GUIDE selects Generate FIG-file only as the default if you do one of the following:

• Start GUIDE from the command line by providing one or more figure objects as
arguments.

guide(f)

In this case, GUIDE selects Generate FIG-file only, even when a code file with a
corresponding name exists in the same folder.

• Start GUIDE from the command line and provide the name of a FIG-file for which no
code file with the same name exists in the same folder.

guide('myfig.fig')

• Use the GUIDE Open Existing GUI tab to open a FIG-file for which no code file with
the same name exists in the same folder.

When you save the figure or UI with Generate FIG-file only selected, GUIDE saves only
the FIG-file. You must update any corresponding code files yourself, as appropriate.

If you want GUIDE to manage the UI code file for you, change the selection to Generate
FIG-file and MATLAB file before saving the UI. If there is no corresponding code file in
the same location, GUIDE creates one. If a code file with the same name as the original
figure or UI exists in the same folder, GUIDE overwrites it. To prevent overwriting an
existing file, save the UI using Save As from the File menu. Select another file name for
the two files. GUIDE updates variable names in the new code file as appropriate.

5 GUIDE Preferences and Options

5-14

Callbacks for UIs without Code

Even when there is no code file associated with a UI FIG-file, you can still provide
callbacks for UI components to make them perform actions when used. In the Property
Inspector, you can type callbacks in the form of character vectors, built-in functions, or
MATLAB code file names; when your program runs, it will execute them if possible. If the
callback is a file name, it can include arguments to that function. For example, setting the
Callback property of a push button to sqrt(2) causes the result of the expression to
display in the Command Window:

ans =
 1.4142

Any file that a callback executes must be in the current folder or on the MATLAB path.
For more information on how callbacks work, see “Write Callbacks in GUIDE” on page 7-
2

See Also

Related Examples
• “GUIDE Preferences” on page 5-2

 See Also

5-15

Lay Out a UI Using GUIDE

• “GUIDE Templates” on page 6-2
• “Set the UI Window Size in GUIDE” on page 6-10
• “Add Components to the GUIDE Layout Area” on page 6-12
• “Align GUIDE UI Components” on page 6-65
• “Customize Tabbing Behavior in a GUIDE UI” on page 6-74
• “Create Menus for GUIDE Apps” on page 6-77
• “Create Toolbars for GUIDE UIs” on page 6-94
• “Design Cross-Platform UIs in GUIDE” on page 6-106

6

GUIDE Templates
In this section...
“Access the Templates” on page 6-2
“Template Descriptions” on page 6-3

Access the Templates
GUIDE provides several templates that you can modify to create your own UIs. The
templates are fully functional apps. To access the templates in GUIDE, select File > New.
GUIDE displays the GUIDE Quick Start dialog box with the Create New GUI tab
selected as shown in the following figure. This tab contains a list of the available
templates.

To use a template:

1 Select a template in the left pane. A preview displays in the right pane.
2 Optionally, name your UI now by selecting Save new figure as and typing the name

in the field to the right. GUIDE saves the UI before opening it in the Layout Editor. If
you choose not to name the UI at this point, GUIDE prompts you to save it and give it
a name the first time you run your program.

6 Lay Out a UI Using GUIDE

6-2

3 Click OK to open the UI template in the Layout Editor.

Template Descriptions
GUIDE provides four fully functional templates. They are described in the following
sections:

• “Blank GUI” on page 6-3
• “GUI with Uicontrols” on page 6-4
• “GUI with Axes and Menu” on page 6-6
• “Modal Question Dialog” on page 6-7

“Out of the box,” none of the UI templates include a menu bar or a toolbar. Neither can
they dock in the MATLAB desktop. You can, however, override these GUIDE defaults to
provide and customize these controls. See the sections “Create Menus for GUIDE Apps”
on page 6-77 and “Create Toolbars for GUIDE UIs” on page 6-94 for details.

Note To see how the templates work, you can view their code and look at their callbacks.
You can also modify the callbacks for your own purposes. To view the code file for any of
these templates, open the template in the Layout Editor and click the Editor button on
the toolbar.

Blank GUI

The following figure shows an example of this template.

 GUIDE Templates

6-3

Select this template when the other templates are not suitable for the UI you want to
create.

GUI with Uicontrols

The following figure shows an example of this template. The user interface controls
shown in this template are the push buttons, radio buttons, edit text, and static text.

6 Lay Out a UI Using GUIDE

6-4

When you click the Run button , the UI appears as shown in the following figure.

 GUIDE Templates

6-5

When you enter values for the density and volume of an object, and click the Calculate
button, the program calculates the mass of the object and displays the result next to
Mass(D*V).

To view the code for these user interface controls, open the template in the Layout Editor
and click the Editor button on the toolbar.

GUI with Axes and Menu

The following figure shows an example of this template.

When you click the Run button on the toolbar, the UI displays a plot of five lines, each
of which is generated from random numbers using the MATLAB rand(5) command. The
following figure shows an example.

6 Lay Out a UI Using GUIDE

6-6

You can select other plots in the pop-up menu. Clicking the Update button displays the
currently selected plot on the axes.

The UI also has a File menu with three items:

• Open displays a dialog box from which you can open files on your computer.
• Print opens the Print dialog box. Clicking OK in the Print dialog box prints the figure.
• Close closes the UI.

To view the code for these menu choices, open the template in the Layout Editor and click
the Editor button on the toolbar.

Modal Question Dialog

The following figure shows an example of this template.

 GUIDE Templates

6-7

When you click the Run button, the following dialog displays.

When you run the UI and assign the output to a variable, the dialog box returns Yes or
No, depending on which button you click. For example, save the template as
ModalDialog.m, run the code, and then click Yes.

a = ModalDialog

6 Lay Out a UI Using GUIDE

6-8

a =

 'Yes'

Select this template if you want the dialog box to return the user’s selection, or if you
want to create a modal dialog box.

Modal dialog boxes are blocking, which means that the code stops executing while dialog
exists. This means that the user cannot interact with other MATLAB windows until they
click one of the dialog buttons.

To view the code for this dialog, open the template in the Layout Editor and click the
Editor button on the toolbar.

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Using GUIDE” on page 2-2
• “Add Components to the GUIDE Layout Area” on page 6-12

 See Also

6-9

Set the UI Window Size in GUIDE
Set the size of the UI window by resizing the grid area in the Layout Editor. Click the
lower-right corner of the layout area and drag it until the UI is the desired size. If
necessary, make the window larger.

As you drag the corner handle, the readout in the lower right corner shows the current
position of the UI in pixels.

Note Setting the Units property to characters (nonresizable UIs) or normalized
(resizable UIs) gives the UI a more consistent appearance across platforms. See “Cross-
Platform Compatible Units” on page 6-107 for more information.

Prevent Existing Objects from Resizing with the Window
Existing objects within the UI resize with the window if their Units are set to
'normalized'. To prevent them from resizing with the window, perform these steps:

1 Set each object’s Units property to an absolute value, such as inches or pixels
before enlarging the UI.

To change the Units property for all the objects in your UI simultaneously, drag a
selection box around all the objects, and then click the Property Inspector button
and set the Units.

2 When you finish enlarging the UI, set each object’s Units property back to
normalized.

6 Lay Out a UI Using GUIDE

6-10

Set the Window Position or Size to an Exact Value
1 In the Layout Editor, open the Property Inspector for the figure by clicking the

button (with no components selected).
2 In the Property Inspector, scroll to the Units property and note whether the current

setting is characters or normalized.
3 Click the down arrow at the far right in the Units row, and select inches.
4 In the Property Inspector, display the Position property elements by clicking the +

sign to the left of Position.
5 Change the x and y coordinates to the point where you want the lower-left corner of

the window to appear, and its width and height.
6 Reset the Units property to its previous setting, as noted in step 2.

Maximize the Layout Area
You can make maximum use of space within the Layout Editor by hiding the GUIDE
toolbar and status bar, and showing only tool icons, as follows:

1 From the View menu, deselect Show Toolbar.
2 From the View menu, deselect Show Status Bar.
3 Select File > Preferences, and then clear Show names in component palette

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Using GUIDE” on page 2-2
• “GUIDE Options” on page 5-10

 See Also

6-11

Add Components to the GUIDE Layout Area
In this section...
“Place Components” on page 6-12
“User Interface Controls” on page 6-18
“Panels and Button Groups” on page 6-39
“Axes” on page 6-44
“Table” on page 6-48
“ActiveX Component” on page 6-59
“Resize GUIDE UI Components” on page 6-61

Place Components
The component palette at the left side of the Layout Editor contains the components that
you can add to your UI.

Note See “Create Menus for GUIDE Apps” on page 6-77 for information about adding
menus to a UI. See “Create Toolbars for GUIDE UIs” on page 6-94 for information about
working with the toolbar.

To place components in the GUIDE layout area and give each component a unique
identifier, follow these steps:

1 Display component names on the palette.

a On the MATLAB Home tab, in the Environment section, click Preferences.
b In the Preferences dialog box, click GUIDE.
c Select Show Names in Component Palette, and then click OK .

2 Place components in the layout area according to your design.

• Drag a component from the palette and drop it in the layout area.
• Click a component in the palette and move the cursor over the layout area. The

cursor changes to a cross. Click again to add the component in its default size, or
click and drag to size the component as you add it.

6 Lay Out a UI Using GUIDE

6-12

Once you have defined a UI component in the layout area, selecting it automatically
shows it in the Property Inspector. If the Property Inspector is not open or is not
visible, double-clicking a component raises the inspector and focuses it on that
component.

The components listed in the following table have additional considerations; read
more about them in the sections described there.

If You Are Adding... Then...
Panels or button groups See “Add a Component to a Panel or

Button Group” on page 6-15.
Menus See “Create Menus for GUIDE Apps”

on page 6-77
Toolbars See “Create Toolbars for GUIDE UIs”

on page 6-94
ActiveX controls See “ActiveX Component” on page 6-

59.

See “Grid and Rulers” on page 6-71 for information about using the grid.
3 Assign a unique identifier to each component. Do this by setting the value of the

component Tag properties. See“Assign an Identifier to Each Component” on page 6-
18 for more information.

4 Specify the look and feel of each component by setting the appropriate properties.
The following topics contain specific information.

• “User Interface Controls” on page 6-18
• “Panels and Button Groups” on page 6-39
• “Axes” on page 6-44
• “Table” on page 6-48
• “ActiveX Component” on page 6-59

This is an example of a UI in the Layout Editor. Components in the Layout Editor are not
active.

 Add Components to the GUIDE Layout Area

6-13

Use Coordinates to Place Components

The status bar at the bottom of the GUIDE Layout Editor displays:

• Current Point — The current location of the mouse relative to the lower left corner of
the grid area in the Layout Editor.

• Position — The Position property of the selected component is a vector: [distance
from left, distance from bottom, width, height], where distances are relative to the
parent figure, panel, or button group.

Here is how to interpret the coordinates in the status bar and rulers:

6 Lay Out a UI Using GUIDE

6-14

• The Position values updates as you move and resize components. The first two
elements in the vector change as you move the component. The last two elements of
the vector change as the height and width of the component change.

• When no components are selected, the Position value displays the location and size of
the figure.

Add a Component to a Panel or Button Group

To add a component to a panel or button group, select the component in the component
palette then move the cursor over the desired panel or button group. The position of the
cursor determines the component's parent.

GUIDE highlights the potential parent as shown in the following figure. The highlight
indicates that if you drop the component or click the cursor, the component will be a child
of the highlighted panel, button group, or figure.

 Add Components to the GUIDE Layout Area

6-15

Note Assign a unique identifier to each component in your panel or button group by
setting the value of its Tag property. See “Assign an Identifier to Each Component” on
page 6-18 for more information.

6 Lay Out a UI Using GUIDE

6-16

Include Existing Components in Panels and Button Groups

When you add a new component or drag an existing component to a panel or button
group, it will become a member, or child, of the panel or button group automatically,
whether fully or partially enclosed by it. However, if the component is not entirely
contained in the panel or button group, it appears to be clipped in the Layout Editor and
in the running app.

You can add a new panel or button group to a UI in order to group any of its existing
controls. In order to include such controls in a new panel or button group, do the
following. The instructions refer to panels, but you do the same for components inside
button groups.

1 Select the New Panel or New Button Group tool and drag out a rectangle to have the
size and position you want.

The panel will not obscure any controls within its boundary unless they are axes,
tables, or other panels or button groups. Only overlap panels you want to nest, and
then make sure the overlap is complete.

2 You can use Send Backward or Send to Back on the Layout menu to layer the new
panel behind components you do not want it to obscure, if your layout has this
problem. As you add components to it or drag components into it, the panel will
automatically layer itself behind them.

Now is a good time to set the panel's Tag and String properties to whatever you
want them to be, using the Property Inspector.

3 Open the Object Browser from the View menu and find the panel you just added. Use
this tool to verify that it contains all the controls you intend it to group together. If
any are missing, perform the following steps.

4 Drag controls that you want to include but don't fit within the panel inside it to
positions you want them to have. Also, slightly move controls that are already in their
correct positions to group them with the panel.

The panel highlights when you move a control, indicating it now contains the control.
The Object Browser updates to confirm the relationship. If you now move the panel,
its child controls move with it.

Tip You need to move controls with the mouse to register them with the surrounding
panel or button group, even if only by a pixel or two. Selecting them and using arrow

 Add Components to the GUIDE Layout Area

6-17

keys to move them does not accomplish this. Use the Object Browser to verify that
controls are properly nested.

See “Panels and Button Groups” on page 6-39 for more information on how to
incorporate panels and button groups into a UI.

Assign an Identifier to Each Component

Use the Tag property to assign a unique and meaningful identifier to your components.

When you place a component in the layout area, GUIDE assigns a default value to the Tag
property. Before saving the UI, replace this value with a name or abbreviation that
reflects the role of the component in the UI.

The name you assign is used by code to identify the component and must be unique in the
UI. To set the Tag property:

1 Select View > Property Inspector or click the Property Inspector button .
2 In the layout area, select the component for which you want to set Tag.
3 In the Property Inspector, select Tag and then replace the value with the name you

want to use as the identifier. In the following figure, Tag is set to pushbutton1.

User Interface Controls
User interface controls include push buttons, toggle buttons, sliders, radio buttons, edit
text controls, static text controls, pop-up menus, check boxes, and list boxes.

To define user interface controls, you must set certain properties. To do this:

6 Lay Out a UI Using GUIDE

6-18

1 Use the Property Inspector to modify the appropriate properties. Open the Property
Inspector by selecting View > Property Inspector or by clicking the Property

Inspector button .
2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of user interface controls and offer
a simple example for each kind of control:

• “Commonly Used Properties” on page 6-19
• “Push Button” on page 6-20
• “Slider” on page 6-22
• “Radio Button” on page 6-24
• “Check Box” on page 6-26
• “Edit Text” on page 6-27
• “Static Text” on page 6-29
• “Pop-Up Menu” on page 6-31
• “List Box” on page 6-33
• “Toggle Button” on page 6-36

Commonly Used Properties

The most commonly used properties needed to describe a user interface control are
shown in the following table. Instructions for a particular control may also list properties
that are specific to that control.

Property Value Description
Enable on, inactive, off. Default

is on.
Determines whether the
control is available to the
user

Max Scalar. Default is 1. Maximum value.
Interpretation depends on
the type of component.

Min Scalar. Default is 0. Minimum value.
Interpretation depends on
the type of component.

 Add Components to the GUIDE Layout Area

6-19

Property Value Description
Position 4-element vector: [distance

from left, distance from
bottom, width, height].

Size of the component and its
location relative to its parent.

String Character vector (for
example, 'button1'). Can
an also be a character array
or a cell array of character
vectors.

Component label. For list
boxes and pop-up menus it is
a list of the items.

Units characters, centimeters,
inches, normalized,
pixels, points. Default is
characters.

Units of measurement used
to interpret the Position
property vector

Value Scalar or vector Value of the component.
Interpretation depends on
the type of component.

For a complete list of properties and for more information about the properties listed in
the table, see Uicontrol.

Push Button

To create a push button with label Button 1, as shown in this figure:

6 Lay Out a UI Using GUIDE

6-20

• Specify the push button label by setting the String property to the desired label, in
this case, Button 1.

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

The push button accommodates only a single line of text. If you specify more than one
line, only the first line is shown. If you create a push button that is too narrow to
accommodate the specified String property value, MATLAB truncates the value with
an ellipsis.

 Add Components to the GUIDE Layout Area

6-21

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

• To add an image to a push button, assign the button's CData property as an m-by-n-
by-3 array of RGB values that defines a truecolor image. You must do this
programmatically in the opening function of the code file. For example, the array img
defines a 16-by-64-by-3 truecolor image using random values between 0 and 1
(generated by rand).

img = rand(16,64,3);
set(handles.pushbutton1,'CData',img);

where pushbutton1 is the push button's Tag property.

Note See ind2rgb for information on converting a matrix X and corresponding
colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Slider

To create a slider as shown in this figure:

6 Lay Out a UI Using GUIDE

6-22

• Specify the range of the slider by setting its Min property to the minimum value of the
slider and its Max property to the maximum value. The Min property must be less than
Max.

• Specify the value indicated by the slider when it is created by setting the Value
property to the appropriate number. This number must be less than or equal to Max
and greater than or equal to Min. If you specify Value outside the specified range, the
slider is not displayed.

• The slider Value changes by a small amount when a user clicks the arrow button, and
changes by a larger amount when the user clicks the trough (also called the channel).
Control how the slider responds to these actions by setting the SliderStep property.
Specify SliderStep as a two-element vector, [minor_step major_step], where
minor_step is less than or equal to major_step. Because specifying very small
values can cause unpredictable slider behavior, make both minor_step and
major_step greater than 1e-6. Set major_step to the proportion of the range that
clicking the trough moves the slider thumb. Setting it to 1 or higher causes the thumb
to move to Max or Min when the trough is clicked.

As major_step increases, the thumb grows longer. When major_step is 1, the
thumb is half as long as the trough. When major_step is greater than 1, the thumb
continues to grow, slowly approaching the full length of the trough. When a slider
serves as a scroll bar, you can uses this behavior to indicate how much of the
document is currently visible by changing the value of major_step.

 Add Components to the GUIDE Layout Area

6-23

• If you want to set the location or size of the component to an exact value, then modify
its Position property.

The slider component provides no text description or data entry capability. Use a
“Static Text” on page 6-29 component to label the slider. Use an “Edit Text” on page
6-27 component to enable a user to input a value to apply to the slider.

Note On Mac platforms, the height of a horizontal slider is constrained. If the height
you set in the position vector exceeds this constraint, the displayed height of the slider
is the maximum allowed. The height element of the position vector is not changed.

Radio Button

To create a radio button with label Indent nested functions, as shown in this figure:

• Specify the radio button label by setting the String property to the desired label, in
this case, Indent nested functions.

6 Lay Out a UI Using GUIDE

6-24

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

The radio button accommodates only a single line of text. If you specify more than one
line, only the first line is shown. If you create a radio button that is too narrow to
accommodate the specified String property value, MATLAB software truncates the
value with an ellipsis.

• Create the radio button with the button selected by setting its Value property to the
value of its Max property (default is 1). Set Value to Min (default is 0) to leave the
radio button unselected. Correspondingly, when the user selects the radio button, the
software sets Value to Max, and to Min when the user deselects it.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

• To add an image to a radio button, assign the button's CData property an m-by-n-by-3
array of RGB values that defines a truecolor image. You must do this programmatically
in the opening function of the code file. For example, the array img defines a 16-by-24-
by-3 truecolor image using random values between 0 and 1 (generated by rand).

img = rand(16,24,3);
set(handles.radiobutton1,'CData',img);

Note To manage exclusive selection of radio buttons and toggle buttons, put them in a
button group. See “Button Group” on page 6-42 for more information.

 Add Components to the GUIDE Layout Area

6-25

Check Box

To create a check box with label Display file extension that is initially checked, as
shown in this figure:

• Specify the check box label by setting the String property to the desired label, in this
case, Display file extension.

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

The check box accommodates only a single line of text. If you specify a component
width that is too small to accommodate the specified String property value, MATLAB
software truncates the value with an ellipsis.

6 Lay Out a UI Using GUIDE

6-26

• Create the check box with the box checked by setting the Value property to the value
of the Max property (default is 1). Set Value to Min (default is 0) to leave the box
unchecked. Correspondingly, when the user clicks the check box, the software sets
Value to Max when the user checks the box and to Min when the user clears it.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

Edit Text

To create an edit text component that displays the initial text Enter your name here, as
shown in this figure:

• Specify the text to be displayed when the edit text component is created by setting the
String property to the desired value, in this case, Enter your name here.

 Add Components to the GUIDE Layout Area

6-27

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

• To enable multiple-line input, specify the Max and Min properties so that their
difference is greater than 1. For example, Max = 2, Min = 0. Max default is 1, Min
default is 0. MATLAB software wraps the displayed text and adds a scroll bar if
necessary. On all platforms, when the user enters a multiline text box via the Tab key,
the editing cursor is placed at its previous location and no text highlights.

If Max-Min is less than or equal to 1, the edit text component allows only a single line
of input. If you specify a component width that is too small to accommodate the
specified text, MATLAB displays only part of that text. The user can use the arrow keys
to move the cursor through the text. On all platforms, when the user enters a single-

6 Lay Out a UI Using GUIDE

6-28

line text box via the Tab key, the entire contents is highlighted and the editing cursor
is at the end of the text.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

• You specify the text font to display in the edit box by typing the name of a font residing
on your system into the FontName entry in the Property Inspector. On Microsoft®

Windows® platforms, the default is MS Sans Serif; on Macintosh and UNIX®

platforms, the default is Helvetica.

Tip To find out what fonts are available, type uisetfont at the MATLAB prompt; a
dialog displays containing a list box from which you can select and preview available
fonts. When you select a font, its name and other characteristics are returned in a
structure, from which you can copy the FontName and paste it into the Property
Inspector. Not all fonts listed may be available on other systems.

Static Text

To create a static text component with text Select a data set, as shown in this figure:

 Add Components to the GUIDE Layout Area

6-29

• Specify the text that appears in the component by setting the component String
property to the desired text, in this case Select a data set.

To display the & character in a list item, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

If your component is not wide enough to accommodate the specified value, MATLAB
wraps the displayed text.

6 Lay Out a UI Using GUIDE

6-30

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

• You can specify a text font, including its FontName, FontWeight, FontAngle,
FontSize, and FontUnits properties. For details, see the previous topic, “Edit Text”
on page 6-27, and for a programmatic approach, the section “How to Set Font
Characteristics” on page 9-22.

Pop-Up Menu

To create a pop-up menu (also known as a drop-down menu or combo box) with items
one, two, three, and four, as shown in this figure:

• Specify the pop-up menu items to be displayed by setting the String property to the
desired items. Click the

button to the right of the property name to open the Property Inspector editor.

 Add Components to the GUIDE Layout Area

6-31

To display the & character in a menu item, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of the menu
items, MATLAB truncates those items with an ellipsis.

• To select an item when the component is created, set Value to a scalar that indicates
the index of the selected list item, where 1 corresponds to the first item in the list. If
you set Value to 2, the menu looks like this when it is created:

6 Lay Out a UI Using GUIDE

6-32

• If you want to set the position and size of the component to exact values, then modify
its Position property. The height of a pop-up menu is determined by the font size.
The height you set in the position vector is ignored.

Note The pop-up menu does not provide for a label. Use a “Static Text” on page 6-29
component to label the pop-up menu.

List Box

To create a list box with items one, two, three, and four, as shown in this figure:

 Add Components to the GUIDE Layout Area

6-33

• Specify the list of items to be displayed by setting the String property to the desired
list. Use the Property Inspector editor to enter the list. You can open the editor by

clicking the button to the right of the property name.

6 Lay Out a UI Using GUIDE

6-34

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of the
specified list items, MATLAB software truncates those items with an ellipsis.

• Specify selection by using the Value property together with the Max and Min
properties.

• To select a single item when the component is created, set Value to a scalar that
indicates the index of the selected list item, where 1 corresponds to the first item in
the list.

• To select more than one item when the component is created, set Value to a vector
of indices of the selected items. Value = [1,3] results in the following selection.

 Add Components to the GUIDE Layout Area

6-35

To enable selection of more than one item, you must specify the Max and Min
properties so that their difference is greater than 1. For example, Max = 2, Min =
0. Max default is 1, Min default is 0.

• If you want no initial selection, set the Max and Min properties to enable multiple
selection, i.e., Max - Min > 1, and then set the Value property to an empty
matrix [].

• If the list box is not large enough to display all list entries, you can set the
ListBoxTop property to the index of the item you want to appear at the top when the
component is created.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

Note The list box does not provide for a label. Use a “Static Text” on page 6-29
component to label the list box.

Toggle Button

To create a toggle button with label Left/Right Tile, as shown in this figure:

6 Lay Out a UI Using GUIDE

6-36

• Specify the toggle button label by setting its String property to the desired label, in
this case, Left/Right Tile.

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

The toggle button accommodates only a single line of text. If you specify more than
one line, only the first line is shown. If you create a toggle button that is too narrow to
accommodate the specified String value, MATLAB truncates the text with an ellipsis.

 Add Components to the GUIDE Layout Area

6-37

• Create the toggle button with the button selected (depressed) by setting its Value
property to the value of its Max property (default is 1). Set Value to Min (default is 0)
to leave the toggle button unselected (raised). Correspondingly, when the user selects
the toggle button, MATLAB software sets Value to Max, and to Min when the user
deselects it. The following figure shows the toggle button in the depressed position.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

• To add an image to a toggle button, assign the button's CData property an m-by-n-by-3
array of RGB values that defines a truecolor image. You must do this programmatically
in the opening function of the code file. For example, the array img defines a 16-by-64-
by-3 truecolor image using random values between 0 and 1 (generated by rand).

img = rand(16,64,3);
set(handles.togglebutton1,'CData',img);

where togglebutton1 is the toggle button's Tag property.

Note To manage exclusive selection of radio buttons and toggle buttons, put them in a
button group. See “Button Group” on page 6-42 for more information.

6 Lay Out a UI Using GUIDE

6-38

Panels and Button Groups
Panels and button groups are containers that arrange UI components into groups. If you
move the panel or button group, its children move with it and maintain their positions
relative to the panel or button group.

To define panels and button groups, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the Property
Inspector by selecting View > Property Inspector or by clicking the Property
Inspector button .

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of panels and button groups and
offer a simple example for each component.

• “Commonly Used Properties” on page 6-39
• “Panel” on page 6-40
• “Button Group” on page 6-42

Commonly Used Properties

The most commonly used properties needed to describe a panel or button group are
shown in the following table:

Property Values Description
Position 4-element vector: [distance

from left, distance from
bottom, width, height].

Size of the component and
its location relative to its
parent.

Title Character vector (for
example, 'Start').

Component label.

TitlePosition lefttop, centertop,
righttop, leftbottom,
centerbottom,
rightbottom. Default is
lefttop.

Location of title in relation
to the panel or button
group.

 Add Components to the GUIDE Layout Area

6-39

Property Values Description
Units characters,

centimeters, inches,
normalized, pixels,
points. Default is
characters.

Units of measurement used
to interpret the Position
property vector

For a complete list of properties and for more information about the properties listed in
the table, see the Uipanel and Uibuttongroup.

Panel

To create a panel with title My Panel as shown in the following figure:

• Specify the panel title by setting the Title property to the desired value, in this case
My Panel.

6 Lay Out a UI Using GUIDE

6-40

To display the & character in the title, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

• Specify the location of the panel title by selecting one of the available
TitlePosition property values from the pop-up menu, in this case lefttop. You
can position the title at the left, middle, or right of the top or bottom of the panel.

 Add Components to the GUIDE Layout Area

6-41

• If you want to set the position or size of the panel to an exact value, then modify its
Position property.

Button Group

To create a button group with title My Button Group as shown in the following figure:

6 Lay Out a UI Using GUIDE

6-42

• Specify the button group title by setting the Title property to the desired value, in
this case My Button Group.

 Add Components to the GUIDE Layout Area

6-43

To display the & character in the title, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash characters (\). For example, \remove yields remove.

• Specify the location of the button group title by selecting one of the available
TitlePosition property values from the pop-up menu, in this case lefttop. You
can position the title at the left, middle, or right of the top or bottom of the button
group.

• If you want to set the position or size of the button group to an exact value, then
modify its Position property.

Axes
Axes allow you to display graphics such as graphs and images using commands such as:
plot, surf, line, bar, polar, pie, contour, and mesh.

To define an axes, you must set certain properties. To do this:

6 Lay Out a UI Using GUIDE

6-44

1 Use the Property Inspector to modify the appropriate properties. Open the Property
Inspector by selecting View > Property Inspector or by clicking the Property
Inspector button .

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of axes and offer a simple example.

• “Commonly Used Properties” on page 6-45
• “Create Axes” on page 6-46

Commonly Used Properties

The most commonly used properties needed to describe an axes are shown in the
following table:

Property Values Description
NextPlot add, replace,

replacechildren. Default
is replace

Specifies whether plotting
adds graphics, replaces
graphics and resets axes
properties to default, or
replaces graphics only.

Position 4-element vector: [distance
from left, distance from
bottom, width, height].

Size of the component and
its location relative to its
parent.

Units normalized,
centimeters,
characters, inches,
pixels, points. Default is
normalized.

Units of measurement used
to interpret position vector

For a complete list of properties and for more information about the properties listed in
the table, see Axes.

See commands such as the following for more information on axes objects: plot, surf,
line, bar, polar, pie, contour, imagesc, and mesh.

Many of these graphing functions reset axes properties by default, according to the
setting of its NextPlot property, which can cause unwanted behavior, such as resetting
axis limits and removing axes context menus and callbacks. See “Create Axes” on page 6-
46 and “Axes” on page 9-20 for information about setting the NextPlot property.

 Add Components to the GUIDE Layout Area

6-45

Create Axes

Here is an axes in a GUIDE app:

Use these guidelines when you create axes objects in GUIDE:

• Allow for tick marks to be placed outside the box that appears in the Layout Editor.
The axes above looks like this in the layout editor; placement allows space at the left
and bottom of the axes for tick marks. Functions that draw in the axes update the tick
marks appropriately.

6 Lay Out a UI Using GUIDE

6-46

• Use the title, xlabel, ylabel, zlabel, and text functions in the code file to label
an axes component. For example,

xlh = (axes_handle,'Years')

labels the X-axis as Years. The handle of the X-axis label is xlh.

The words remove, default, and factory (case sensitive) are reserved. To use one
of these in component text, prepend a backslash character (\). For example, \remove
yields remove.

• If you want to set the position or size of the axes to an exact value, then modify its
Position property.

 Add Components to the GUIDE Layout Area

6-47

• If you customize axes properties, some of them (or example, callbacks, font
characteristics, and axis limits and ticks) may get reset to default every time you draw
a graph into the axes when the NextPlot property has its default value of
'replace'. To keep customized properties as you want them, set NextPlot to
'replacechildren' in the Property Inspector, as shown here.

Table
Tables enable you to display data in a two dimensional table. You can use the Property
Inspector to get and set the object property values.

Commonly Used Properties

The most commonly used properties of a table component are listed in the table below.
These are grouped in the order they appear in the Table Property Editor. Please refer to
uitable documentation for detail of all the table properties:

6 Lay Out a UI Using GUIDE

6-48

Group Property Values Description
Column ColumnName 1-by-n cell array of

character vectors |
{'numbered'} |
empty matrix ([])

The header label of
the column.

ColumnFormat Cell array of
character vectors

Determines display
and editability of
columns

ColumnWidth 1-by-n cell array or
'auto'

Width of each
column in pixels;
individual column
widths can also be
set to 'auto'

ColumnEditable logical 1-by-n matrix
| scalar logical value
| empty matrix ([])

Determines data in a
column as editable

Row RowName 1-by-n cell array of
character vectors

Row header label
names

Color BackgroundColor n-by-3 matrix of RGB
triples

Background color of
cells

RowStriping {on} | off Color striping of
table rows

Data Data Matrix or cell array
of numeric, logical,
or character data

Table data.

Create a Table

To create a UI with a table in GUIDE as shown, do the following:

 Add Components to the GUIDE Layout Area

6-49

Drag the table icon on to the Layout Editor and right click in the table. From the table’s
context menu, select Table Property Editor. You can also select Table Property Editor
from the Tools menu when you select a table by itself.

6 Lay Out a UI Using GUIDE

6-50

Use the Table Property Editor

When you open it this way, the Table Property Editor displays the Column pane. You can
also open it from the Property Inspector by clicking one of its Table Property Editor icons

, in which case the Table Property Editor opens to display the pane appropriate for the
property you clicked.

Clicking items in the list on the left hand side of the Table Property Editor changes the
contents of the pane to the right . Use the items to activate controls for specifying the
table's Columns, Rows, Data, and Color options.

The Columns and Rows panes each have a data entry area where you can type names
and set properties. on a per-column or per-row basis. You can edit only one row or column

 Add Components to the GUIDE Layout Area

6-51

definition at a time. These panes contain a vertical group of five buttons for editing and
navigating:

Button Purpose Accelerator Keys
 Windows Macintosh
Insert Inserts a new column or row definition

entry below the current one
Insert Insert

Delete Deletes the current column or row
definition entry (no undo)

Ctrl+D Cmd+D

Copy Inserts a Copy of the selected entry in a
new row below it

Ctrl+P Cmd+P

Up Moves selected entry up one row Ctrl+
uparrow

Cmd+
uparrow

Down Moves selected entry down one row Ctrl+
downarrow

Cmd+
downarrow

Keyboard equivalents only operate when the cursor is in the data entry area. In addition
to those listed above, typing Ctrl+T or Cmd+T selects the entire field containing the
cursor for editing (if the field contains text).

To save changes to the table you make in the Table Property Editor, click OK, or click
Apply commit changes and keep on using the Table Property Editor.

Set Column Properties

Click Insert to add two more columns.

6 Lay Out a UI Using GUIDE

6-52

Select Show names entered below as the column headers and set the ColumnName
by entering Rate, Amount, Available, and Fixed/Adj in Name group. for the Available and
Fixed/Adj columns set the ColumnEditable property to on. Lastly set the
ColumnFormat for the four columns

 Add Components to the GUIDE Layout Area

6-53

For the Rate column, select Numeric. For the Amount Column select Custom and in the
Custom Format Editor, choose Bank.

6 Lay Out a UI Using GUIDE

6-54

Leave the Available column at the default value. This allows MATLAB to chose based on
the value of the Data property of the table. For the Fixed/Adj column select Choice
List to create a pop-up menu. In the Choice List Editor, click Insert to add a second
choice and type Fixed and Adjustable as the 2 choices.

 Add Components to the GUIDE Layout Area

6-55

Note For a user to select items from a choice list, the ColumnEditable property of the
column that the list occupies must be set to 'true'. The pop-up control only appears
when the column is editable.

Set Row Properties

In the Row tab, leave the default RowName, Show numbered row headers.

6 Lay Out a UI Using GUIDE

6-56

Set Data Properties

Use the Data property to specify the data in the table. Create the data in the command
window before you specify it in GUIDE. For this example, type:

dat = {6.125, 456.3457, true, 'Fixed';...
6.75, 510.2342, false, 'Adjustable';...
7, 658.2, false, 'Fixed';};

In the Table Property Editor, select the data that you defined and select Change data
value to the selected workspace variable below.

 Add Components to the GUIDE Layout Area

6-57

Set Color Properties

Specify the BackgroundColor and RowStriping for your table in the Color tab.

6 Lay Out a UI Using GUIDE

6-58

You can change other uitable properties to the table via the Property Inspector.

ActiveX Component
When you drag an ActiveX component from the component palette into the layout area,
GUIDE opens a dialog box, similar to the following, that lists the registered ActiveX
controls on your system.

Note If MATLAB software is not installed locally on your computer — for example, if you
are running the software over a network — you might not find the ActiveX control
described in this example. To register the control, see “Registering Controls and Servers”.

 Add Components to the GUIDE Layout Area

6-59

1 Select the desired ActiveX control. The right panel shows a preview of the selected
control.

2 Click Create. The control appears as a small box in the Layout Editor.
3 Resize the control to approximately the size of the square shown in the preview pane.

You can do this by clicking and dragging a corner of the control, as shown in the
following figure.

6 Lay Out a UI Using GUIDE

6-60

When you select an ActiveX control, you can open the ActiveX Property Editor by right-
clicking and selecting ActiveX Property Editor from the context menu or clicking the
Tools menu and selecting it from there.

Note What an ActiveX Property Editor contains and looks like is dependent on what
user controls that the authors of the particular ActiveX object have created and stored in
the UI for the object. In some cases, a UI without controls or no UI at all appears when
you select this menu item.

Resize GUIDE UI Components
You can resize components in one of the following ways:

• “Drag a Corner of the Component” on page 6-61
• “Set the Component's Position Property” on page 6-62

Drag a Corner of the Component

Select the component you want to resize. Click one of the corner handles and drag it until
the component is the desired size.

 Add Components to the GUIDE Layout Area

6-61

Set the Component's Position Property

Select one or more components that you want to resize. Then select View > Property
Inspectoror click the Property Inspector button .

1 In the Property Inspector, scroll to the Units property and note whether the current
setting is characters or normalized. Click the button next to Units and then
change the setting to inches from the pop-up menu.

6 Lay Out a UI Using GUIDE

6-62

2 Click the + sign next to Position. The Property Inspector displays the elements of
the Position property.

3 Type the width and height you want the components to be.
4 Reset the Units property to its previous setting, either characters or

normalized.

Note To select multiple components, they must have the same parent. That is, they must
be contained in the same figure, panel, or button group. Setting the Units property to
characters (nonresizable UIs) or normalized (resizable UIs) gives the UI a more
consistent appearance across platforms.

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2

 See Also

6-63

• “Callbacks for Specific Components” on page 7-12

6 Lay Out a UI Using GUIDE

6-64

Align GUIDE UI Components
In this section...
“Align Objects Tool” on page 6-65
“Property Inspector” on page 6-68
“Grid and Rulers” on page 6-71
“Guide Lines” on page 6-72

Align Objects Tool
The Align Objects tool enables you to position objects with respect to each other and to
adjust the spacing between selected objects. The specified alignment operations apply to
all components that are selected when you press the Apply button. To open the Align
Objects tool in the GUIDE Layout Editor, select Tools > Align Objects.

Note To select multiple components, they must have the same parent. That is, they must
be contained in the same figure, panel, or button group.

 Align GUIDE UI Components

6-65

The Align Objects tool provides two types of alignment operations:

• Align — Align all selected components to a single reference line.
• Distribute — Space all selected components uniformly with respect to each other.

Both types of alignment can be applied in the vertical and horizontal directions. In many
cases, it is better to apply alignments independently to the vertical and horizontal using
two separate steps.

Align Options

There are both vertical and horizontal align options. Each option aligns selected
components to a reference line, which is determined by the bounding box that encloses
the selected objects. For example, the following picture of the layout area shows the
bounding box (indicated by the dashed line) formed by three selected push buttons.

6 Lay Out a UI Using GUIDE

6-66

All of the align options (vertical top, center, bottom and horizontal left, center, right) place
the selected components with respect to the corresponding edge (or center) of this
bounding box.

Distribute Options

Distributing components adds equal space between all components in the selected group.
The distribute options operate in two different modes:

• Default behavior — MATLAB distributes space equally among components within the
bounding box.

• Select the Set spacing check box — You specify the number of pixels between each
component.

Both modes enable you to specify how the spacing is measured, as indicated by the button
labels on the alignment tool. These options include spacing measured with respect to the
following edges:

• Vertical — inner, top, center, and bottom
• Horizontal — inner, left, center, and right

 Align GUIDE UI Components

6-67

Property Inspector
About the Property Inspector

In GUIDE, as in MATLAB generally, you can see and set most components' properties
using the Property Inspector. To open it from the GUIDE Layout Editor, do any of the
following:

• Select the component you want to inspect, or double-click it to open the Property
Inspector and bring it to the foreground

• Select View > Property Inspector.
• Click the Property Inspector button

The Property Inspector window opens, displaying the properties of the selected
component. For example, here is a view of a push button's properties.

6 Lay Out a UI Using GUIDE

6-68

Scroll down to see additional properties. Click any property value or icon to set its value.

The Property Inspector provides context-sensitive help for individual properties. To see a
definition of any property, right-click the name or value in the Property Inspector and
click the What's This? menu item that appears. A context-sensitive help window opens
displaying the definition of the property.

 Align GUIDE UI Components

6-69

6 Lay Out a UI Using GUIDE

6-70

Use the Property Inspector to Align Components

The Property Inspector enables you to align components by setting their Position
properties. A component's Position property is a four-element vector that specifies the
size and location of the component: [distance from left, distance from bottom, width,
height]. The values are given in the units specified by the Units property of the
component.

1 Select the components you want to align.
2 Select View > Property Inspector or click the Property Inspector button .
3 In the Property Inspector, scroll to the Units property and note its current setting,

then change the setting to inches.
4 Scroll to the Position property. This figure shows the Position property for

multiple components of the same size.

5 Change the value of x to align their left sides. Change the value of y to align their
bottom edges. For example, setting x to 2.0 aligns the left sides of the components 2
inches from the left side of the window.

6 When the components are aligned, change the Units property back to its original
setting.

Grid and Rulers
The layout area displays a grid and rulers to facilitate component layout. Grid lines are
spaced at 50-pixel intervals by default. The size of each pixel is 1/96th of an inch on
Windows systems and 1/72nd of an inch on Macintosh systems. On Linux® systems, the
size of a pixel is determined by your system resolution.

 Align GUIDE UI Components

6-71

You can optionally enable snap-to-grid, which causes any object that is moved close to a
grid line to jump to that line. Snap-to-grid works with or without a visible grid.

Use the Grid and Rulers dialog (select Tools > Grid and Rulers) to:

• Control visibility of rulers, grid, and guide lines on page 6-72
• Set the grid spacing
• Enable or disable snap-to-grid

Guide Lines
The Layout Editor has both vertical and horizontal snap-to guide lines. Components snap
to the line when you move them close to the line.

Guide lines are useful when you want to establish a reference for component alignment at
an arbitrary location in the Layout Editor.

Creating Guide Lines

To create a guide line, click the top or left ruler and drag the line into the layout area.

6 Lay Out a UI Using GUIDE

6-72

See Also

Related Examples
• “GUIDE Options” on page 5-10

 See Also

6-73

Customize Tabbing Behavior in a GUIDE UI
The tab order is the order in which components acquire focus when a user presses the
Tab key on the keyboard. Focus is generally denoted by a border or a dotted border.

You can set, independently, the tab order of components that have the same parent. The
figure window, each panel, and each button group has its own tab order. For example, you
can set the tab order of components that have the figure as a parent. You can also set the
tab order of components that have a panel or button group as a parent.

If, in tabbing through the components at the figure level, a user tabs to a panel or button
group, then subsequent tabs sequence through the components of the panel or button
group before returning to the level from which the panel or button group was reached.

Note Axes cannot be tabbed. From GUIDE, you cannot include ActiveX components in
the tab order.

When you create a UI, GUIDE sets the tab order at each level to be the order in which you
add components to that level in the Layout Editor. This may not be the best order for the
user.

Note Tab order also affects the stacking order of components. If components overlap,
those that appear lower in the tabbing order, are drawn on top of those that appear
higher in the order.

The following UI contains an axes component, a slider, a panel, static text, and a pop-up
menu. Of these, only the slider, the panel, and the pop-up menu at the figure level can be
tabbed. The panel contains three push buttons, which can all be tabbed.

6 Lay Out a UI Using GUIDE

6-74

To examine and change the tab order of the panel components, click the panel
background to select it, then select Tools > Tab Order Editor in the Layout Editor.

 Customize Tabbing Behavior in a GUIDE UI

6-75

The Tab Order Editor displays the panel's components in their current tab order. To
change the tab order, select a component and press the up or down arrow to move the
component up or down in the list. If you set the tab order for the first three components
in the example to be

1 Surf push button
2 Contour push button
3 Mesh push button

the user first tabs to the Surf push button, then to the Contour push button, and then to
the Mesh push button. Subsequent tabs sequence through the remaining components at
the figure level.

6 Lay Out a UI Using GUIDE

6-76

Create Menus for GUIDE Apps
In this section...
“Menus for the Menu Bar” on page 6-77
“Context Menus” on page 6-87

You can use GUIDE to create menu bars (containing pull-down menus) as well as context
menus that you attach to components. You can create both types of menus using the
Menu Editor. Access the Menu Editor from the Tools menu or click the Menu Editor
button .

Menus for the Menu Bar
• “How Menus Affect Figure Docking” on page 6-78

 Create Menus for GUIDE Apps

6-77

• “Add Standard Menus to the Menu Bar” on page 6-79
• “Create a Menu” on page 6-79
• “Add Items to a Menu” on page 6-81
• “Additional Drop-Down Menus” on page 6-84
• “Cascading Menus” on page 6-84

When you create a drop-down menu, GUIDE adds its title to the menu bar. You then can
create menu items for that menu. Each menu item can have a cascading menu, also
known as a submenu, and these items can have cascading menus, and so on.

How Menus Affect Figure Docking

By default, when you create a UI with GUIDE, it does not create a menu bar for that UI.
You might not need menus for your UI, but if you want the user to be able to dock or
undock the UI window, it must contain a menu bar or a toolbar. This is because docking is
controlled by the docking icon, a small curved arrow near the upper-right corner of the
menu bar or the toolbar, as the following illustration shows.

Figure windows with a standard menu bar also have a Desktop menu from which the
user can dock and undock them.

To display the docking arrow and the Desktop > Dock Figure menu item, use the
Property Inspector to set the figure property DockControls to 'on'. You must also set
the MenuBar and/or ToolBar figure properties to 'figure' to display docking controls.

The WindowStyle figure property also affects docking behavior. The default is
'normal', but if you change it to 'docked', then the following applies:

• The UI window opens docked in the desktop when you run it.

6 Lay Out a UI Using GUIDE

6-78

• The DockControls property is set to 'on' and cannot be turned off until
WindowStyle is no longer set to 'docked'.

• If you undock a UI window created with WindowStyle 'docked', it will have not
have a docking arrow unless the figure displays a menu bar or a toolbar (either
standard or customized). When it has no docking arrow, users can undock it from the
desktop, but will be unable to redock it there.

However, when you provide your own menu bar or toolbar using GUIDE, it can display the
docking arrow if you want the UI window to be dockable. See the following sections and
“Create Toolbars for GUIDE UIs” on page 6-94 for details.

Note UIs that are modal dialogs (figures with WindowStyle set to 'modal') cannot
have menu bars, toolbars, or docking controls.

For more information, see the DockControls, MenuBar, ToolBar, and WindowStyle
property descriptions in Figure.

Add Standard Menus to the Menu Bar

The figure MenuBar property controls whether your UI displays the MATLAB standard
menus on the menu bar. GUIDE initially sets the value of MenuBar to none. If you want
your UI to display the MATLAB standard menus, use the Property Inspector to set
MenuBar to figure.

• If the value of MenuBar is none, GUIDE automatically adds a menu bar that displays
only the menus you create.

• If the value of MenuBar is figure, the UI displays the MATLAB standard menus and
GUIDE adds the menus you create to the right side of the menu bar.

In either case, you can enable the user to dock and undock the window by setting the
figure's DockControls property to 'on'.

Create a Menu

1 Start a new menu by clicking the New Menu button in the toolbar. A menu title,
Untitled 1, appears in the left pane of the dialog box.

 Create Menus for GUIDE Apps

6-79

Note By default, GUIDE selects the Menu Bar tab when you open the Menu Editor.
2 Click the menu title to display a selection of menu properties in the right pane.

6 Lay Out a UI Using GUIDE

6-80

3 Fill in the Text and Tag fields for the menu. For example, set Text to File and set
Tag to file_menu. Click outside the field for the change to take effect.

Text is a text label for the menu item. To display the & character in a label, use two &
characters. The words remove, default, and factory (case sensitive) are reserved.
To use one of these as labels, prepend a backslash character (\). For example,
\remove yields remove.

Tag is a character vector that serves as an identifier for the menu object. It is used in
the code to identify the menu item and must be unique in your code file.

Add Items to a Menu

Use the New Menu Item tool to create menu items that are displayed in the drop-down
menu.

 Create Menus for GUIDE Apps

6-81

1 Add an Open menu item under File, by selecting File then clicking the New Menu
Item button in the toolbar. A temporary numbered menu item label, Untitled,
appears.

2 Fill in the Text and Tag fields for the new menu item. For example, set Text to Open
and set Tag to menu_file_open. Click outside the field for the change to take effect.

6 Lay Out a UI Using GUIDE

6-82

You can also

• Choose an alphabetic keyboard accelerator for the menu item with the Accelerator
pop-up menu. In combination with Ctrl, this is the keyboard equivalent for a menu
item that does not have a child menu. Note that some accelerators may be used for
other purposes on your system and that other actions may result.

• Display a separator above the menu item by checking Separator above this item.
• Display a check next to the menu item when the menu is first opened by checking

Check mark this item. A check indicates the current state of the menu item. See the
example in “Add Items to the Context Menu” on page 6-89.

• Enable this item when the menu is first opened by checking Enable this item. This
allows the user to select this item when the menu is first opened. If you clear this
option, the menu item appears dimmed when the menu is first opened, and the user
cannot select it.

 Create Menus for GUIDE Apps

6-83

• Specify the Callback function that executes when the users selects the menu item. If
you have not yet saved the UI, the default value is %automatic. When you save the
UI, and if you have not changed this field, GUIDE automatically sets the value using a
combination of the Tag field and the UI file name. See “Menu Item” on page 7-22 for
more information about specifying this field and for programming menu items.

The View button displays the callback, if there is one, in an editor. If you have not yet
saved the UI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties, by clicking
the More Properties button. For detailed information about the properties, see
Uimenu.

Note See “Menu Item” on page 7-22 and “How to Update a Menu Item Check” on page
7-24 for programming information and basic examples.

Additional Drop-Down Menus

To create additional drop-down menus, use the New Menu button in the same way you did
to create the File menu. For example, the following figure also shows an Edit drop-
down menu.

Cascading Menus

To create a cascading menu, select the menu item that will be the title for the cascading
menu, then click the New Menu Item button. In the example below, Edit is a cascading
menu.

6 Lay Out a UI Using GUIDE

6-84

Note See “Menu Item” on page 7-22 for information about programming menu items.

The following Menu Editor illustration shows three menus defined for the figure menu
bar.

 Create Menus for GUIDE Apps

6-85

When you run the app, the menu titles appear in the menu bar.

6 Lay Out a UI Using GUIDE

6-86

Context Menus
A context menu is displayed when a user right-clicks the object for which the menu is
defined. The Menu Editor enables you to define context menus and associate them with
objects in the layout. The process has three steps:

1 “Create the Parent Menu” on page 6-88
2 “Add Items to the Context Menu” on page 6-89
3 “Associate the Context Menu with an Object” on page 6-92

Note See “Menus for the Menu Bar” on page 6-77 for information about defining menus
in general. See “Menu Item” on page 7-22 for information about defining local callback
functions for your menus.

 Create Menus for GUIDE Apps

6-87

Create the Parent Menu

All items in a context menu are children of a menu that is not displayed on the figure
menu bar. To define the parent menu:

1 Select the Menu Editor's Context Menus tab and select the New Context Menu
button from the toolbar.

2 Select the menu, and in the Tag field type the context menu tag
(axes_context_menu in this example).

6 Lay Out a UI Using GUIDE

6-88

Add Items to the Context Menu

Use the New Menu Item button to create menu items that are displayed in the context
menu.

1 Add a Blue background color menu item to the menu by selecting
axes_context_menu and clicking the New Menu Item tool. A temporary numbered
menu item label, Untitled, appears.

 Create Menus for GUIDE Apps

6-89

2 Fill in the Text and Tag fields for the new menu item. For example, set Text to Blue
background color and set Tag to blue_background. Click outside the field for
the change to take effect.

6 Lay Out a UI Using GUIDE

6-90

You can also modify menu items in these ways:

• Display a separator above the menu item by checking Separator above this item.
• Display a check next to the menu item when the menu is first opened by checking

Check mark this item. A check indicates the current state of the menu item. See the
example in “Add Items to the Context Menu” on page 6-89. See “How to Update a
Menu Item Check” on page 7-24 for a code example.

• Enable this item when the menu is first opened by checking Enable this item. This
allows the user to select this item when the menu is first opened. If you clear this
option, the menu item appears dimmed when the menu is first opened, and the user
cannot select it.

• Specify a Callback for the menu that performs the action associated with the menu
item. If you have not yet saved the UI, the default value is %automatic. When you
save the UI, and if you have not changed this field, GUIDE automatically creates a
callback in the code file using a combination of the Tag field and the UI file name. The

 Create Menus for GUIDE Apps

6-91

callback's name does not display in the Callback field of the Menu Editor, but
selecting the menu item does trigger it.

You can also type a command into the Callback field. It can be any valid MATLAB
expression or command. For example, this command

set(gca, 'Color', 'y')

sets the current axes background color to yellow. However, the preferred approach to
performing this operation is to place the callback in the code file. This avoids the use
of gca, which is not always reliable when several figures or axes exist. Here is a
version of this callback coded as a function in the code file:

function axesyellow_Callback(hObject, eventdata, handles)
% hObject handle to axesyellow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.axes1,'Color','y')

This code sets the background color of the axes with Tag axes1 no matter to what
object the context menu is attached to.

If you enter a callback value in the Menu Editor, it overrides the callback for the item
in the code file, if any has been saved. If you delete a value that you entered in the
Callback field, the callback for the item in the code file is executed when the user
selects that item in the UI.

See “Menu Item” on page 7-22 for more information about specifying this field and
for programming menu items. For another example of programming context menus in
GUIDE, see “GUIDE App Containing Tables and Plots” on page 8-11.

The View button displays the callback, if there is one, in an editor. If you have not yet
saved the UI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties except
callbacks, by clicking the More Properties button. For detailed information about
these properties, see Uicontextmenu.

Associate the Context Menu with an Object

1 In the Layout Editor, select the object for which you are defining the context menu.
2 Use the Property Inspector to set this object's UIContextMenu property to the name

of the desired context menu.

6 Lay Out a UI Using GUIDE

6-92

The following figure shows the UIContextMenu property for the axes object with Tag
property axes1.

In the code file, complete the local callback function for each item in the context menu.
Each callback executes when a user selects the associated context menu item. See “Menu
Item” on page 7-22 for information on defining the syntax.

Note See “Menu Item” on page 7-22 and “How to Update a Menu Item Check” on page
7-24 for programming information and basic examples.

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 7-2
• “Callbacks for Specific Components” on page 7-12
• “Create Toolbars for GUIDE UIs” on page 6-94

 See Also

6-93

Create Toolbars for GUIDE UIs

In this section...
“Toolbar and Tools” on page 6-94
“Editing Tool Icons” on page 6-102

Toolbar and Tools
To add a toolbar to a UI, select the Toolbar Editor.

You can also open the Toolbar Editor from the Tools menu.

6 Lay Out a UI Using GUIDE

6-94

The Toolbar Editor gives you interactive access to all the features of the uitoolbar,
uipushtool, and uitoggletool functions. It only operates in the context of GUIDE;
you cannot use it to modify any of the built-in MATLAB toolbars. However, you can use the
Toolbar Editor to add, modify, and delete a toolbar from any UI in GUIDE.

Currently, you can add one toolbar to your UI in GUIDE. However, your UI can also
include the standard MATLAB figure toolbar. If you need to, you can create a toolbar that
looks like a normal figure toolbar, but customize its callbacks to make tools (such as pan,
zoom, and open) behave in specific ways.

Note You do not need to use the Toolbar Editor if you simply want your UI to have a
standard figure toolbar. You can do this by setting the figure's ToolBar property to
'figure', as follows:

 Create Toolbars for GUIDE UIs

6-95

1 Open the UI in GUIDE.
2 From the View menu, open Property Inspector.
3 Set the ToolBar property to 'figure' using the drop-down menu.
4 Save the figure

If you later want to remove the figure toolbar, set the ToolBar property to 'auto' and
resave the UI. Doing this will not remove or hide your custom toolbar. See “Create
Toolbars for Programmatic Apps” on page 9-51 for more information about making
toolbars manually.

If you want users to be able to dock and undock a UI window on the MATLAB desktop, it
must have a toolbar or a menu bar, which can either be the standard ones or ones you
create in GUIDE. In addition, the figure property DockControls must be turned on. For
details, see “How Menus Affect Figure Docking” on page 6-78.

Use the Toolbar Editor

The Toolbar Editor contains three main parts:

• The Toolbar Layout preview area on the top
• The Tool Palette on the left
• Two tabbed property panes on the right

6 Lay Out a UI Using GUIDE

6-96

To add a tool, drag an icon from the Tool Palette into the Toolbar Layout (which initially
contains the text prompt shown above), and edit the tool's properties in the Tool
Properties pane.

When you first create a UI, no toolbar exists on it. When you open the Toolbar Editor and
place the first tool, a toolbar is created and a preview of the tool you just added appears
in the top part of the window. If you later open a UI that has a toolbar, the Toolbar Editor
shows the existing toolbar, although the Layout Editor does not.

Add Tools

You can add a tool to a toolbar in three ways:

• Drag and drop tools from the Tool Palette.

 Create Toolbars for GUIDE UIs

6-97

• Select a tool in the palette and click the Add button.
• Double-click a tool in the palette.

Dragging allows you to place a tool in any order on the toolbar. The other two methods
place the tool to the right of the right-most tool on the Toolbar Layout. The new tool is
selected (indicated by a dashed box around it) and its properties are shown in the Tool
Properties pane. You can select only one tool at a time. You can cycle through the Tool
Palette using the tab key or arrow keys on your computer keyboard. You must have
placed at least one tool on the toolbar.

After you place tools from the Tool Palette into the Toolbar Layout area, the Toolbar
Editor shows the properties of the currently selected tool, as the following illustration
shows.

6 Lay Out a UI Using GUIDE

6-98

Predefined and Custom Tools

The Toolbar Editor provides two types of tools:

• Predefined tools, having standard icons and behaviors
• Custom tools, having generic icons and no behaviors

Predefined Tools

The set of icons on the bottom of the Tool Palette represent standard MATLAB figure
tools. Their behavior is built in. Predefined tools that require an axes (such as pan and
zoom) do not exhibit any behavior in UIs lacking axes. The callback(s) defining the
behavior of the predefined tool are shown as %default, which calls the same function
that the tool calls in standard figure toolbars and menus (to open files, save figures,
change modes, etc.). You can change %default to some other callback to customize the
tool; GUIDE warns you that you will modify the behavior of the tool when you change a
callback field or click the View button next to it, and asks if you want to proceed or not.

Custom Tools

The two icons at the top of the Tool Palette create pushtools and toggletools. These have
no built-in behavior except for managing their appearance when clicked on and off.
Consequently, you need to provide your own callback(s) when you add one to your toolbar.
In order for custom tools to respond to clicks, you need to edit their callbacks to create
the behaviors you desire. Do this by clicking the View button next to the callback in the
Tool Properties pane, and then editing the callback in the Editor window.

Add and Remove Separators

Separators are vertical bars that set off tools, enabling you to group them visually. You
can add or remove a separator in any of three ways:

• Right-click on a tool's preview and select Show Separator, which toggles its
separator on and off.

• Check or clear the check box Separator to the left in the tool's property pane.
• Change the Separator property of the tool from the Property Inspector

After adding a separator, that separator appears in the Toolbar Layout to the left of the
tool. The separator is not a distinct object or icon; it is a property of the tool.

 Create Toolbars for GUIDE UIs

6-99

Move Tools

You can reorder tools on the toolbar in two ways:

• Drag a tool to a new position.
• Select a tool in the toolbar and click one of the arrow buttons below the right side of

the toolbar.

If a tool has a separator to its left, the separator moves with the tool.

Remove Tools

You can remove tools from the toolbar in three ways:

• Select a tool and press the Delete key.
• Select a tool and click the Delete button.
• Right-click a tool and select Delete from the context menu.

You cannot undo any of these actions.

Edit a Tool’s Properties

You edit the appearance and behavior of the currently selected tool using the Tool
Properties pane, which includes controls for setting the most commonly used tool
properties:

• CData — The tool’s icon
• Tag — The internal name for the tool
• Enable — Whether users can click the tool
• Separator — A bar to the left of the icon for setting off and grouping tools
• Clicked Callback — The function called when users click the tool
• Off Callback (uitoggletool only) — The function called when the tool is put in the off

state
• On Callback (uitoggletool only) — The function called when the tool is put in the on

state

See “Write Callbacks in GUIDE” on page 7-2 for details on programming the tool
callbacks. You can also access these and other properties of the selected tool with the
Property Inspector. To open the Property Inspector, click the More Properties button on
the Tool Properties pane.

6 Lay Out a UI Using GUIDE

6-100

Edit Tool Icons

To edit a selected toolbar icon, click the Edit button in the Tool Properties pane, next to
CData (icon) or right-click the Toolbar Layout and select Edit Icon from the context
menu. The Icon Editor opens with the tool’s CData loaded into it. For information about
editing icons, see “Use the Icon Editor” on page 6-103.

Edit Toolbar Properties

If you click an empty part of the toolbar or click the Toolbar Properties tab, you can edit
two of its properties:

• Tag — The internal name for the toolbar
• Visible — Whether the toolbar is displayed in your UI

The Tag property is initially set to uitoolbar1. The Visible property is set to on.
When on, the Visible property causes the toolbar to be displayed on the UI regardless
of the setting of the figure’s Toolbar property. If you want to toggle a custom toolbar as
you can built-in ones (from the View menu), you can create a menu item, a check box, or
other control to control its Visible property.

To access nearly all the properties for the toolbar in the Property Inspector, click More
Properties.

Test Your Toolbar

To try out your toolbar, click the Run button in the Layout Editor. The software asks if you
want to save changes to its .fig file first.

Remove a Toolbar

You can remove a toolbar completely—destroying it—from the Toolbar Editor, leaving your
UI without a toolbar (other than the figure toolbar, which is not visible by default). The
are two ways to remove a toolbar:

•
Click the Remove button on the right end of the toolbar.

• Right-click a blank area on the toolbar and select Remove Toolbar from the context
menu.

If you remove all the individual tools in the ways shown in “Remove Tools” on page 6-100
without removing the toolbar itself, your UI will contain an empty toolbar.

 Create Toolbars for GUIDE UIs

6-101

Close the Toolbar Editor

You can close the Toolbar Editor window in two ways:

• Press the OK button.
• Click the Close box in the title bar.

When you close the Toolbar Editor, the current state of your toolbar is saved with the UI
you are editing. You do not see the toolbar in the Layout Editor, but you can run your
program to see it.

Editing Tool Icons
GUIDE includes its own Icon Editor, a dialog for creating and modifying icons such as
icons on toolbars. You can access this editor only from the Toolbar Editor. This figure
shows the Icon Editor loaded with a standard Save icon.

6 Lay Out a UI Using GUIDE

6-102

Use the Icon Editor

The Icon Editor dialog includes the following components:

• Icon file name — The icon image file to be loaded for editing
• Import button — Opens a file dialog to select an existing icon file for editing
• Drawing tools — A group of four tools on the left side for editing icons

• Pencil tool — Color icon pixels by clicking or dragging
• Eraser tool — Erase pixels to be transparent by clicking or dragging
• Paint bucket tool — Flood regions of same-color pixels with the current color
• Pick color tool — Click a pixel or color palette swatch to define the current color

• Icon Edit pane — A n-by-m grid where you color an icon
• Preview pane — A button with a preview of current state of the icon
• Color Palette — Swatches of color that the pencil and paint tools can use
• More Colors button — Opens the Colors dialog box for choosing and defining colors
• OK button — Dismisses the dialog and returns the icon in its current state
• Cancel button — Closes the dialog without returning the icon

To work with the Icon Editor,

1 Open the Icon Editor for a selected tool’s icon.
2 Using the Pencil tool, color the squares in the grid:

• Click a color cell in the palette.
• That color appears in the Color Palette preview swatch.
• Click in specific squares of the grid to transfer the selected color to those squares.
• Hold down the left mouse button and drag the mouse over the grid to transfer the

selected color to the squares that you touch.
• Change a color by writing over it with another color.

3 Using the Eraser tool, erase the color in some squares

• Click the Eraser button on the palette.
• Click in specific squares to erase those squares.
• Click and drag the mouse to erase the squares that you touch.

 Create Toolbars for GUIDE UIs

6-103

• Click a another drawing tool to disable the Eraser.
4 Click OK to close the dialog and return the icon you created or click Cancel to close

the dialog without modifying the selected tool’s icon.

The Toolbar Editor and Icon Editor are shown together below.

6 Lay Out a UI Using GUIDE

6-104

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 7-2
• “Callbacks for Specific Components” on page 7-12
• “Create Menus for GUIDE Apps” on page 6-77

 See Also

6-105

Design Cross-Platform UIs in GUIDE
In this section...
“Default System Font” on page 6-106
“Standard Background Color” on page 6-107
“Cross-Platform Compatible Units” on page 6-107

Default System Font
By default, user interface controls (uicontrols) use the default font for the platform on
which they are running. For example, when displaying your UI on PCs, uicontrols use MS
San Serif. When your program runs on a different platform, it uses that computer's
default font. This provides a consistent look with respect to your UI and other
applications.

If you have set the FontName property to a named font and want to return to the default
value, you can set the property to default. This ensures that the software uses the
system default at run-time.

You can use the Property Inspector to set this property:

As an alternative, use the set command to set the property in the code file. For example,
if there is a push button in your UI and its handle is stored in the pushbutton1 field of
the handles structure, then the statement

set(handles.pushbutton1,'FontName','default')

6 Lay Out a UI Using GUIDE

6-106

sets the FontName property to use the system default.

Specify a Fixed-Width Font

If you want to use a fixed-width font for a user interface control, set its FontName
property to fixedwidth. This special identifier ensures that your UI uses the standard
fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform by querying
the root FixedWidthFontName property.

get(groot,'FixedWidthFontName')

Use a Specific Font Name

You can specify an actual font name (such as Times or Courier) for the FontName
property. However, doing so may cause your UI to not look as you intended when run on a
different computer. If the target computer does not have the specified font, it will
substitute another font that may not look good in your UI or may not be the standard font
used for UIs on that system. Also, different versions of the same named font may have
different size requirements for a given set of characters.

Standard Background Color
The default component background color is the standard system background color on
which the UI is displaying. This color varies on different computer systems, e.g., the
standard shade of gray on the PC differs from that on UNIX system, and may not match
the default UI background color.

If you use the default component background color, you can use that same color as the
background color for your UI. This provides a consistent look with respect to your UI and
other applications. To do this in GUIDE, check Options > Use system color scheme for
background on the Layout Editor Tools menu.

Note This option is available only if you first select the Generate FIG-file and MATLAB
File option.

Cross-Platform Compatible Units
Cross-platform compatible UIs should look correct on computers having different screen
sizes and resolutions. Since the size of a pixel can vary on different computer displays,

 Design Cross-Platform UIs in GUIDE

6-107

using the default figure Units of pixels does not produce a UI that looks the same on
all platforms.

For this reason, GUIDE defaults the Units property for the figure to characters.

System-Dependent Units

Character units are defined by characters from the default system font. The width of a
character unit equals the width of the letter x in the system font. The height of a
character unit is the distance between the baselines of two lines of text. Note that
character units are not square.

Units and Resize Behavior

The default Units property might change if you change the resize behavior using Tools
> GUI Options. This table lists the default units for each of the Resize behavior options.

Resize Behavior Default Units for Figure Default Units for Other
Components

Non-resizable characters characters
Proportional characters normalized
Other (Use
SizeChangedFcn)

characters characters

At, times it might be convenient to use other units, such as inches or centimeters.
However, to preserve the look of your UI on different computers, remember to change the
figure Units property back to the default units after completing your layout calculations.

For more information on the resize behavior options, see “GUIDE Options” on page 5-10.

Note GUIDE does not automatically adjust component units if you modify the figure's
Resize property programmatically or in the Property Inspector.

6 Lay Out a UI Using GUIDE

6-108

Programming a GUIDE App

• “Write Callbacks in GUIDE” on page 7-2
• “Initialize UI Components in GUIDE Apps” on page 7-8
• “Callbacks for Specific Components” on page 7-12
• “Examples of GUIDE Apps” on page 7-29

7

Write Callbacks in GUIDE

In this section...
“Callbacks for Different User Actions” on page 7-2
“GUIDE-Generated Callback Functions and Property Values” on page 7-4
“GUIDE Callback Syntax” on page 7-5
“Renaming and Removing GUIDE-Generated Callbacks” on page 7-6

Callbacks for Different User Actions
UI and graphics components have certain properties that you can associate with specific
callback functions. Each of these properties corresponds to a specific user action. For
example, a uicontrol has a property called Callback. You can set the value of this
property to be a handle to a callback function, an anonymous function, or a character
vector containing a MATLAB expression. Setting this property makes your app respond
when the user interacts with the uicontrol. If the Callback property has no specified
value, then nothing happens when the user interacts with the uicontrol.

This table lists the callback properties that are available, the user actions that trigger the
callback function, and the most common UI and graphics components that use them.

Callback
Property

User Action Components That Use This
Property

ButtonDownFcn End user presses a mouse button
while the pointer is on the
component or figure.

axes, figure, uibuttongroup,
uicontrol, uipanel, uitable,

Callback End user triggers the component.
For example: selecting a menu
item, moving a slider, or pressing a
push button.

uicontextmenu, uicontrol,
uimenu

CellEditCallb
ack

End user edits a value in a table
whose cells are editable.

uitable

CellSelection
Callback

End user selects cells in a table. uitable

7 Programming a GUIDE App

7-2

Callback
Property

User Action Components That Use This
Property

ClickedCallba
ck

End user clicks the push tool or
toggle tool with the left mouse
button.

uitoggletool, uipushtool

CloseRequestF
cn

The figure closes. figure

CreateFcn Callback executes when MATLAB
creates the object, but before it is
displayed.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool,
uitoolbar

DeleteFcn Callback executes just before
MATLAB deletes the figure.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool,
uitoolbar

KeyPressFcn End user presses a keyboard key
while the pointer is on the object.

figure, uicontrol, uipanel,
uipushtool, uitable,
uitoolbar

KeyReleaseFcn End user releases a keyboard key
while the pointer is on the object.

figure, uicontrol, uitable

OffCallback Executes when the State of a
toggle tool changes to 'off'.

uitoggletool

OnCallback Executes when the State of a
toggle tool changes to 'on'.

uitoggletool

SizeChangedFc
n

End user resizes a button group,
figure, or panel whose Resize
property is 'on'.

figure, uipanel,
uibuttongroup

SelectionChan
gedFcn

End user selects a different radio
button or toggle button within a
button group.

uibuttongroup

WindowButtonD
ownFcn

End user presses a mouse button
while the pointer is in the figure
window.

figure

 Write Callbacks in GUIDE

7-3

Callback
Property

User Action Components That Use This
Property

WindowButtonM
otionFcn

End user moves the pointer within
the figure window.

figure

WindowButtonU
pFcn

End user releases a mouse button. figure

WindowKeyPres
sFcn

End user presses a key while the
pointer is on the figure or any of
its child objects.

figure

WindowKeyRele
aseFcn

End user releases a key while the
pointer is on the figure or any of
its child objects.

figure

WindowScrollW
heelFcn

End user turns the mouse wheel
while the pointer is on the figure.

figure

GUIDE-Generated Callback Functions and Property Values
How GUIDE Manages Callback Functions and Properties

After you add a uicontrol, uimenu, or uicontextmenu component to your UI, but
before you save it, GUIDE populates the Callback property with the value, %automatic.
This value indicates that GUIDE will generate a name for the callback function.

When you save your UI, GUIDE adds an empty callback function definition to your code
file, and it sets the control’s Callback property to be an anonymous function. This
function definition is an example of a GUIDE-generated callback function for a push
button.
function pushbutton1_Callback(hObject,eventdata,handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

end

If you save this UI with the name, myui, then GUIDE sets the push button’s Callback
property to the following value:
@(hObject,eventdata)myui('pushbutton1_Callback',hObject,eventdata,guidata(hObject))

This is an anonymous function that serves as a reference to the function,
pushbutton1_Callback. This anonymous function has four input arguments. The first

7 Programming a GUIDE App

7-4

argument is the name of the callback function. The last three arguments are provided by
MATLAB, and are discussed in the section, “GUIDE Callback Syntax” on page 7-5.

Note GUIDE does not automatically generate callback functions for other UI
components, such as tables, panels, or button groups. If you want any of these
components to execute a callback function, then you must create the callback by right-
clicking on the component in the layout, and selecting an item under View Callbacks in
the context menu.

GUIDE Callback Syntax
All callbacks must accept at least three input arguments:

• hObject — The UI component that triggered the callback.
• eventdata — A variable that contains detailed information about specific mouse or

keyboard actions.
• handles — A struct that contains all the objects in the UI. GUIDE uses the guidata

function to store and maintain this structure.

For the callback function to accept additional arguments, you must put the additional
arguments at the end of the argument list in the function definition.

The eventdata Argument

The eventdata argument provides detailed information to certain callback functions. For
example, if the end user triggers the KeyPressFcn, then MATLAB provides information
regarding the specific key (or combination of keys) that the end user pressed. If
eventdata is not available to the callback function, then MATLAB passes it as an empty
array. The following table lists the callbacks and components that use eventdata.

Callback Property Name Component
WindowKeyPressFcn
WindowKeyReleaseFcn
WindowScrollWheel

figure

KeyPressFcn figure, uicontrol, uitable
KeyReleaseFcn figure, uicontrol, uitable
SelectionChangedFcn uibuttongroup

 Write Callbacks in GUIDE

7-5

Callback Property Name Component
CellEditCallback
CellSelectionCallback

uitable

Renaming and Removing GUIDE-Generated Callbacks
Renaming Callbacks

GUIDE creates the name of a callback function by combining the component’s Tag
property and the callback property name. If you change the component’s Tag value, then
GUIDE changes the callback's name the next time you save the UI.

If you decide to change the Tag value after saving the UI, then GUIDE updates the
following items (assuming that all components have unique Tag values).

• Component's callback function definition
• Component’s callback property value
• References in the code file to the corresponding field in the handles structure

To rename a callback function without changing the component’s Tag property:

1 Change the name in the callback function definition.
2 Update the component’s callback property by changing the first argument passed to

the anonymous function. For example, the original callback property for a push
button might look like this:

@(hObject,eventdata)myui('pushbutton1_Callback',...
 hObject,eventdata,guidata(hObject))

In this example, you must change, 'pushbutton1_Callback' to the new function
name.

3 Change all other references to the old function name to the new function name in the
code file.

Deleting Callbacks

You can delete a callback function when you want to remove or change the function that
executes when the end user performs a specific action. To delete a callback function:

7 Programming a GUIDE App

7-6

1 Search and replace all instances that refer to the callback function in your code.
2 Open the UI in GUIDE and replace all instances that refer to the callback function in

the Property Inspector.
3 Delete the callback function.

See Also

Related Examples
• “Callbacks for Specific Components” on page 7-12
• “Anonymous Functions”
• “Share Data Among Callbacks” on page 11-2

 See Also

7-7

Initialize UI Components in GUIDE Apps
In this section...
“Opening Function” on page 7-8
“Output Function” on page 7-10

Opening Function
The opening function is the first callback in every GUIDE code file. It is executed just
before the UI is made visible to the user, but after all the components have been created,
i.e., after the components' CreateFcn callbacks, if any, have been run.

You can use the opening function to perform your initialization tasks before the user has
access to the UI. For example, you can use it to create data or to read data from an
external source. MATLAB passes any command-line arguments to the opening function.

Function Naming and Template

GUIDE names the opening function by appending _OpeningFcn to the name of the UI.
This is an example of an opening function template as it might appear in the myui code
file.
% --- Executes just before myui is made visible.
function myui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to myui (see VARARGIN)

% Choose default command line output for myui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes myui wait for user response (see UIRESUME)
% uiwait(handles.myui);

Input Arguments

The opening function has four input arguments hObject, eventdata, handles, and
varargin. The first three are the same as described in “GUIDE Callback Syntax” on page
7-5. the last argument, varargin, enables you to pass arguments from the command line

7 Programming a GUIDE App

7-8

to the opening function. The opening function can take actions with them (for example,
setting property values) and also make the arguments available to callbacks by adding
them to the handles structure.

For more information about using varargin, see the varargin reference page and
“Support Variable Number of Inputs”.

Passing Object Properties to an Opening Function

You can pass property name-value pairs as two successive command line arguments when
you run your program. If you pass a name-value pair that corresponds to a figure
property, MATLAB sets the property automatically. For example, my_gui('Color',
'Blue') sets the background color of the UI window to blue.

If you want your program to accept an input argument that is not a valid figure property,
then your code must recognize and handle that argument. Otherwise, the argument is
ignored. The following example is from the opening function for the Modal Question
Dialog on page 6-7 template, available from the GUIDE Quick Start dialog box. The added
code opens the modal dialog with a message, specified from the command line or by
another program that calls this one. For example, this command displays the text, 'Do
you want to exit?' on the window.

myui('String','Do you want to exit?')

To accept this name-value pair, you must customize the opening function because
'String' is not a valid figure property. The Modal Question Dialog template file contains
code to performs these tasks:

• Uses the nargin function to determine the number of user-specified arguments
(which do not include hObject, eventdata, and handles)

• Parses varargin to obtain property name/value pairs, converting each name to lower
case

• Handles the case where the argument 'title' is used as an alias for the figure Name
property

• Handles the case 'string' , assigning the following value as a String property to
the appropriate static text object

function modalgui_OpeningFcn(hObject, eventdata, handles, varargin)
.
.
.
% Insert custom Title and Text if specified by the user
% Hint: when choosing keywords, be sure they are not easily confused

 Initialize UI Components in GUIDE Apps

7-9

% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
 for index = 1:2:(nargin-3),
 if nargin-3==index, break, end
 switch lower(varargin{index})
 case 'title'
 set(hObject, 'Name', varargin{index+1});
 case 'string'
 set(handles.text1, 'String', varargin{index+1});
 end
 end
end
.
.
.

The if block loops through the odd elements of varargin checking for property names
or aliases, and the case blocks assign the following (even) varargin element as a value
to the appropriate property of the figure or one of its components. You can add more
cases to handle additional property assignments that you want the opening function to
perform.

Initial Template Code

Initially, the input function template contains these lines of code:

• handles.output = hObject adds a new element, output, to the handles
structure and assigns it the value of the input argument hObject, which is the figure
object.

• guidata(hObject,handles) saves the handles structure. You must use the
guidata function to save any changes that you make to the handles structure. It is
not sufficient just to set the value of a handles field.

• uiwait(handles.myui), initially commented out, blocks program execution until
uiresume is called or the window is closed. Note that uiwait allows the user access
to other MATLAB windows. Remove the comment symbol for this statement if you
want the UI to be blocking when it opens.

Output Function
The output function returns, to the command line, outputs that are generated during its
execution. It is executed when the opening function returns control and before control
returns to the command line. This means that you must generate the outputs in the
opening function, or call uiwait in the opening function to pause its execution while
other callbacks generate outputs.

7 Programming a GUIDE App

7-10

Function Naming and Template

GUIDE names the output function by appending _OutputFcn to the name of the UI. This
is an example of an output function template as it might appear in the myui code file.
% --- Outputs from this function are returned to the command line.
function varargout = myui_OutputFcn(hObject, eventdata,...
 handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

Input Arguments

The output function has three input arguments: hObject, eventdata, and handles.
They are the same as described in “GUIDE Callback Syntax” on page 7-5.

Output Arguments

The output function has one output argument, varargout, which it returns to the
command line. By default, the output function assigns handles.output to varargout.

You can change the output by taking one of these actions:

• Change the value of handles.output. It can be any valid MATLAB value including a
structure or cell array.

• Add output arguments to varargout. The varargout argument is a cell array. It can
contain any number of output arguments. By default, GUIDE creates just one output
argument, handles.output. To create an additional output argument, create a new
field in the handles structure and add it to varargout using a command similar to

varargout{2} = handles.second_output;

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2

 See Also

7-11

Callbacks for Specific Components
Coding the behavior of a UI component involves specific tasks that are unique to the type
of component you are working with. This topic contains simple examples of callbacks for
each type of component. The examples are written for GUIDE unless otherwise stated.
For general information about coding callbacks, see “Write Callbacks in GUIDE” on page
7-2 or “Write Callbacks for Apps Created Programmatically” on page 10-5.

How to Use the Example Code
If you are working in GUIDE, then right-click on the component in your layout and select
the appropriate callback property from the View Callbacks menu. Doing so creates an
empty callback function that is automatically associated with the component. The specific
function name that GUIDE creates is based on the component’s Tag property, so your
function name might be slightly different than the function name in the example code. Do
not change the function name that GUIDE creates in your code. To use the example code
in your app, copy the code from the example’s function body into your function’s body.

If you are creating an app programmatically, (without GUIDE), then you can adapt the
example code into your code. To adapt an example into your code, omit the third input
argument, handles, from the function definition. Also, replace any references to the
handles array with the appropriate object handle. To associate the callback function
with the component, set the component's callback property to be a handle to the callback
function. For example, this command creates a push button component and sets the
Callback property to be a handle to the function, pushbutton1_callback.
pb =
uicontrol('Style','pushbutton','Callback',@pushbutton1_Callback);

Push Button
This code is an example of a push button callback function in GUIDE. Associate this
function with the push button Callback property to make it execute when the end user
clicks on the push button.

function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Goodbye');
close(gcf);

7 Programming a GUIDE App

7-12

The first line of code, display('Goodbye'), displays 'Goodbye' in the Command
Window. The next line gets the UI window using gcf and then closes it.

Toggle Button
This code is an example of a toggle button callback function in GUIDE. Associate this
function with the toggle button Callback property to make it execute when the end user
clicks on the toggle button.

function togglebutton1_Callback(hObject,eventdata,handles)
% hObject handle to togglebutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of togglebutton1
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
 display('down');
elseif button_state == get(hObject,'Min')
 display('up');
end

The toggle button’s Value property matches the Min property when the toggle button is
up. The Value changes to the Max value when the toggle button is depressed. This
callback function gets the toggle button’s Value property and then compares it with the
Max and Min properties. If the button is depressed, then the function displays 'down' in
the Command Window. If the button is up, then the function displays 'up'.

Radio Button
This code is an example of a radio button callback function in GUIDE. Associate this
function with the radio button Callback property to make it execute when the end user
clicks on the radio button.

function radiobutton1_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton1

if (get(hObject,'Value') == get(hObject,'Max'))

 Callbacks for Specific Components

7-13

 display('Selected');
else
 display('Not selected');
end

The radio button’s Value property matches the Min property when the radio button is not
selected. The Value changes to the Max value when the radio button is selected. This
callback function gets the radio button’s Value property and then compares it with the
Max and Min properties. If the button is selected, then the function displays 'Selected'
in the Command Window. If the button is not selected, then the function displays 'Not
selected'.

Note Use a button group to manage exclusive selection behavior for radio buttons. See
“Button Group” on page 7-21 for more information.

Check Box
This code is an example of a check box callback function in GUIDE. Associate this
function with the check box Callback property to make it execute when the end user
clicks on the check box.

function checkbox1_Callback(hObject, eventdata, handles)
% hObject handle to checkbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of checkbox1

if (get(hObject,'Value') == get(hObject,'Max'))
 display('Selected');
else
 display('Not selected');
end

The check box’s Value property matches the Min property when the check box is not
selected. The Value changes to the Max value when the check box is selected. This
callback function gets the check box’s Value property and then compares it with the Max
and Min properties. If the check box is selected, the function displays 'Selected' in the
Command Window. If the check box is not selected, it displays 'Not selected'.

7 Programming a GUIDE App

7-14

Edit Text Field
This code is an example of a callback for an edit text field in GUIDE. Associate this
function with the uicontrol’s Callback property to make it execute when the end user
types inside the text field.

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents as double
input = get(hObject,'String');
display(input);

When the user types characters inside the text field and presses the Enter key, the
callback function retrieves those characters and displays them in the Command Window.

To enable users to enter multiple lines of text, set the Max and Min properties to numeric
values that satisfy Max - Min > 1. For example, set Max to 2, and Min to 0 to satisfy the
inequality. In this case, the callback function triggers when the end user clicks on an area
in the UI that is outside of the text field.

Retrieve Numeric Values

If you want to interpret the contents of an edit text field as numeric values, then convert
the characters to numbers using the str2double function. The str2double function
returns NaN for nonnumeric input.

This code is an example of an edit text field callback function that interprets the user’s
input as numeric values.

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents as a double
input = str2double(get(hObject,'String'));
if isnan(input)
 errordlg('You must enter a numeric value','Invalid Input','modal')

 Callbacks for Specific Components

7-15

 uicontrol(hObject)
 return
else
 display(input);
end

When the end user enters values into the edit text field and presses the Enter key, the
callback function gets the value of the String property and converts it to a numeric
value. Then, it checks to see if the value is NaN (nonnumeric). If the input is NaN, then the
callback presents an error dialog box.

Slider
This code is an example of a slider callback function in GUIDE. Associate this function
with the slider Callback property to make it execute when the end user moves the
slider.

function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine...
slider_value = get(hObject,'Value');
display(slider_value);

When the end user moves the slider, the callback function gets the current value of the
slider and displays it in the Command Window. By default, the slider’s range is [0, 1]. To
modify the range, set the slider’s Max and Min properties to the maximum and minimum
values, respectively.

List Box
Populate Items in the List Box

If you are developing an app using GUIDE, use the list box CreateFcn callback to add
items to the list box.

This code is an example of a list box CreateFcn callback that populates the list box with
the items, Red, Green, and Blue.

7 Programming a GUIDE App

7-16

function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

% Hint: listbox controls usually have a white background on Windows.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject,'String',{'Red';'Green';'Blue'});

The last line, set(hObject,'String',{'Red';'Green';'Blue'}), populates the
contents of the list box.

If you are developing an app programmatically (without GUIDE), then populate the list
box when you create it. For example:

function myui()
 figure
 uicontrol('Style','Listbox',...
 'String',{'Red';'Green';'Blue'},...
 'Position',[40 70 80 50]);
end

Change the Selected Item

When the end user selects a list box item, the list box’s Value property changes to a
number that corresponds to the item’s position in the list. For example, a value of 1
corresponds to the first item in the list. If you want to change the selection in your code,
then change the Value property to another number between 1 and the number of items
in the list.

For example, you can use the handles structure in GUIDE to access the list box and
change the Value property:

set(handles.listbox1,'Value',2)

The first argument, handles.listbox1, might be different in your code, depending on
the value of the list box Tag property.

 Callbacks for Specific Components

7-17

Write the Callback Function

This code is an example of a list box callback function in GUIDE. Associate this function
with the list box Callback property to make it execute when a selects an item in the list
box.

function listbox1_Callback(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns contents
% contents{get(hObject,'Value')} returns selected item from listbox1
items = get(hObject,'String');
index_selected = get(hObject,'Value');
item_selected = items{index_selected};
display(item_selected);

When the end user selects an item in the list box, the callback function performs the
following tasks:

• Gets all the items in the list box and stores them in the variable, items.
• Gets the numeric index of the selected item and stores it in the variable,

index_selected.
• Gets the value of the selected item and stores it in the variable, item_selected.
• Displays the selected item in the MATLAB Command Window.

The example, “Interactive List Box App in GUIDE” on page 8-15 shows how to populate a
list box with directory names.

Pop-Up Menu
Populate Items in the Pop-Up Menu

If you are developing an app using GUIDE, use the pop-up menu CreateFcn callback to
add items to the pop-up menu.

This code is an example of a pop-up menu CreateFcn callback that populates the menu
with the items, Red, Green, and Blue.

function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

7 Programming a GUIDE App

7-18

% handles empty - handles not created until after all CreateFcns

% Hint: popupmenu controls usually have a white background on Windows.
if ispc && isequal(get(hObject,'BackgroundColor'),...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject,'String',{'Red';'Green';'Blue'});

The last line, set(hObject,'String',{'Red';'Green';'Blue'}), populates the
contents of the pop-up menu.

If you are developing an app programmatically (without GUIDE), then populate the pop-
up menu when you create it. For example:

function myui()
 figure
 uicontrol('Style','popupmenu',...
 'String',{'Red';'Green';'Blue'},...
 'Position',[40 70 80 20]);
end

Change the Selected Item

When the end user selects an item, the pop-up menu’s Value property changes to a
number that corresponds to the item’s position in the menu. For example, a value of 1
corresponds to the first item in the list. If you want to change the selection in your code,
then change the Value property to another number between 1 and the number of items
in the menu.

For example, you can use the handles structure in GUIDE to access the pop-up menu
and change the Value property:

set(handles.popupmenu1,'Value',2)

The first argument, handles.popupmenu1, might be different in your code, depending
on the value of the pop-up menu Tag property.

Write the Callback Function

This code is an example of a pop-up menu callback function in GUIDE. Associate this
function with the pop-up menu Callback property to make it execute when the end user
selects an item from the menu.

 Callbacks for Specific Components

7-19

function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns contents...
% contents{get(hObject,'Value')} returns selected item...
items = get(hObject,'String');
index_selected = get(hObject,'Value');
item_selected = items{index_selected};
display(item_selected);

When the user selects an item in the pop-up menu, the callback function performs the
following tasks:

• Gets all the items in the pop-up menu and stores them in the variable, items.
• Gets the numeric index of the selected item and stores it in the variable,

index_selected.
• Gets the value of the selected item and stores it in the variable, item_selected.
• Displays the selected item in the MATLAB Command Window.

Panel
Make the Panel Respond to Button Clicks

You can create a callback function that executes when the end user right-clicks or left-
clicks on the panel. If you are working in GUIDE, then right-click the panel in the layout
and select View Callbacks > ButtonDownFcn to create the callback function.

This code is an example of a ButtonDownFcn callback in GUIDE.

function uipanel1_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to uipanel1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Mouse button was pressed');

When the end user clicks on the panel, this function displays the text, 'Mouse button
was pressed', in the Command Window.

7 Programming a GUIDE App

7-20

Resize the Window and Panel

By default, GUIDE UIs cannot be resized, but you can override this behavior by selecting
Tools > GUI Options and setting Resize behavior to Proportional.

Programmatic UIs can be resized by default, and you can change this behavior by setting
the Resize property of the figure on or off.

When the UI window is resizable, the position of components in the window adjust as the
user resizes it. If you have a panel in your UI, then the panel’s size will change with the
window’s size. Use the panel’s SizeChangedFcn callback to make your app perform
specific tasks when the panel resizes.

This code is an example of a panel’s SizeChangedFcn callback in a GUIDE app. When
the user resizes the window, this function modifies the font size of static text inside the
panel.

function uipanel1_SizeChangedFcn(hObject, eventdata, handles)
% hObject handle to uipanel1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(hObject,'Units','Points')
panelSizePts = get(hObject,'Position');
panelHeight = panelSizePts(4);
set(hObject,'Units','normalized');
newFontSize = 10 * panelHeight / 115;
texth = findobj('Tag','text1');
set(texth,'FontSize',newFontSize);

If your UI contains nested panels, then they will resize from the inside-out (in child-to-
parent order).

Note To make the text inside a panel resize automatically, set the fontUnits property to
'normalized'.

Button Group
Button groups are similar to panels, but they also manage exclusive selection of radio
buttons and toggle buttons. When a button group contains multiple radio buttons or
toggle buttons, the button group allows the end user to select only one of them.

 Callbacks for Specific Components

7-21

Do not code callbacks for the individual buttons that are inside a button group. Instead,
use the button group’s SelectionChangedFcn callback to respond when the end user
selects a button.

This code is an example of a button group SelectionChangedFcn callback that
manages two radio buttons and two toggle buttons.

function uibuttongroup1_SelectionChangedFcn(hObject, eventdata, handles)
% hObject handle to the selected object in uibuttongroup1
% eventdata structure with the following fields
% EventName: string 'SelectionChanged' (read only)
% OldValue: handle of the previously selected object or empty
% NewValue: handle of the currently selected object
% handles structure with handles and user data (see GUIDATA)
switch get(eventdata.NewValue,'Tag') % Get Tag of selected object.
 case 'radiobutton1'
 display('Radio button 1');
 case 'radiobutton2'
 display('Radio button 2');
 case 'togglebutton1'
 display('Toggle button 1');
 case 'togglebutton2'
 display('Toggle button 2');
end

When the end user selects a radio button or toggle button in the button group, this
function determines which button the user selected based on the button’s Tag property.
Then, it executes the code inside the appropriate case.

Note The button group’s SelectedObject property contains a handle to the button that
user selected. You can use this property elsewhere in your code to determine which
button the user selected.

Menu Item
The code in this section contains example callback functions that respond when the end
user selects Edit > Copy > To File in this menu.

7 Programming a GUIDE App

7-22

% --
function edit_menu_Callback(hObject, eventdata, handles)
% hObject handle to edit_menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Edit menu selected');

% --
function copy_menu_item_Callback(hObject, eventdata, handles)

 Callbacks for Specific Components

7-23

% hObject handle to copy_menu_item (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Copy menu item selected');

% --
function tofile_menu_item_Callback(hObject, eventdata, handles)
% hObject handle to tofile_menu_item (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename,path] = uiputfile('myfile.m','Save file name');

The function names might be different in your code, depending on the tag names you
specify in the GUIDE Menu Editor.

The callback functions trigger in response to these actions:

• When the end user selects the Edit menu, the edit_menu_Callback function
displays the text, 'Edit menu selected', in the MATLAB Command Window.

• When the end user hovers the mouse over the Copy menu item, the
copy_menu_item_Callback function displays the text, 'Copy menu item
selected', in the MATLAB Command Window.

• When the end user clicks and releases the mouse button on the To File menu item, the
tofile_menu_item_Callback function displays a dialog box that prompts the end
user to select a destination folder and file name.

The tofile_menu_item_Callback function calls the uiputfile function to prompt
the end user to supply a destination file and folder. If you want to create a menu item that
prompts the user for an existing file, for example, if your UI has an Open File menu item,
then use the uigetfile function.

When you create a cascading menu like this one, the intermediate menu items trigger
when the mouse hovers over them. The final, terminating, menu item triggers when the
mouse button releases over the menu item.

How to Update a Menu Item Check

You can add a check mark next to a menu item to indicate that an option is enabled. In
GUIDE, you can select Check mark this item in the Menu Editor to make the menu item
checked by default. Each time the end user selects the menu item, the callback function
can turn the check on or off.

This code shows how to change the check mark next to a menu item.

7 Programming a GUIDE App

7-24

if strcmp(get(hObject,'Checked'),'on')
 set(hObject,'Checked','off');
else
 set(hObject,'Checked','on');
end

The strcmp function compares two character vectors and returns true when they
match. In this case, it returns true when the menu item’s Checked property matches the
character vector, 'on'.

See “Create Menus for GUIDE Apps” on page 6-77 for more information about creating
menu items in GUIDE. See “Create Menus for Programmatic Apps” on page 9-38 for
more information about creating menu items programmatically.

Table
This code is an example of the table callback function, CellSelectionCallback.
Associate this function with the table CellSelectionCallback property to make it
execute when the end user selects cells in the table.

function uitable1_CellSelectionCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields
% Indices: row and column indices of the cell(s) currently selected
% handles structure with handles and user data (see GUIDATA)
data = get(hObject,'Data');
indices = eventdata.Indices;
r = indices(:,1);
c = indices(:,2);
linear_index = sub2ind(size(data),r,c);
selected_vals = data(linear_index);
selection_sum = sum(sum(selected_vals))

When the end user selects cells in the table, this function performs the following tasks:

• Gets all the values in the table and stores them in the variable, data.
• Gets the indices of the selected cells. These indices correspond to the rows and

columns in data.
• Converts the row and column indices into linear indices. The linear indices allow you

to select multiple elements in an array using one command.
• Gets the values that the end user selected and stores them in the variable,

selected_vals.

 Callbacks for Specific Components

7-25

• Sums all the selected values and displays the result in the Command Window.

This code is an example of the table callback function, CellEditCallback. Associate
this function with the table CellEditCallback property to make it execute when the
end user edits a cell in the table.

function uitable1_CellEditCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields
% Indices: row and column indices of the cell(s) edited
% PreviousData: previous data for the cell(s) edited
% EditData: string(s) entered by the user
% NewData: EditData or its converted form set on the Data property.
% Empty if Data was not changed
% Error: error string when failed to convert EditData
data = get(hObject,'Data');
data_sum = sum(sum(data))

When the end user finishes editing a table cell, this function gets all the values in the
table and calculates the sum of all the table values. The ColumnEditable property must
be set to true in at least one column to allow the end user to edit cells in the table. For
more information about creating tables and modifying their properties in GUIDE, see
“Add Components to the GUIDE Layout Area” on page 6-12.

Axes
The code in this section is an example of an axes ButtonDownFcn that triggers when the
end user clicks on the axes.

7 Programming a GUIDE App

7-26

function axes1_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
pt = get(hObject,'CurrentPoint')

The coordinates of the pointer display in the MATLAB Command Window when the end
user clicks on the axes (but not when that user clicks on another graphics object parented
to the axes).

 Callbacks for Specific Components

7-27

Note Most MATLAB plotting functions clear the axes and reset a number of axes
properties, including the ButtonDownFcn, before plotting data. To create an interface
that lets the end user plot data interactively, consider providing a component such as a
push button to control plotting. Such components’ properties are unaffected by the
plotting functions. If you must use the axes ButtonDownFcn to plot data, then use
functions such as line, patch, and surface.

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 7-2
• “Write Callbacks for Apps Created Programmatically” on page 10-5

7 Programming a GUIDE App

7-28

Examples of GUIDE Apps
The following are examples that are packaged with MATLAB. The introductory text for
most examples provides instructions on copying them to a writable folder on your system,
so you can follow along.

• “Modal Dialog Box in GUIDE” on page 8-2
• “GUIDE App With Parameters for Displaying Plots” on page 8-7
• “GUIDE App Containing Tables and Plots” on page 8-11
• “Interactive List Box App in GUIDE” on page 8-15
• “Plot Workspace Variables in a GUIDE App” on page 8-20
• “Automatically Refresh Plot in a GUIDE App” on page 8-23

 Examples of GUIDE Apps

7-29

Examples of GUIDE UIs

• “Modal Dialog Box in GUIDE” on page 8-2
• “GUIDE App With Parameters for Displaying Plots” on page 8-7
• “GUIDE App Containing Tables and Plots” on page 8-11
• “Interactive List Box App in GUIDE” on page 8-15
• “Plot Workspace Variables in a GUIDE App” on page 8-20
• “Automatically Refresh Plot in a GUIDE App” on page 8-23

8

Modal Dialog Box in GUIDE
In this section...
“Create the Dialog Box” on page 8-2
“Create the Program That Opens the Dialog Box” on page 8-3
“Run the Program” on page 8-5

This example shows how to create a program that opens a modal dialog box when the
user clicks a button. The dialog box contains two buttons, and the user must choose one
of them. The program responds according to the user’s selection in the dialog box.

Create the Dialog Box
1 On the Home tab, in the Environment section, click Preferences > GUIDE >

Show names in component palette.
2 In the Command Window, type guide.
3 In the GUIDE Quick Start dialog box, select Modal Question Dialog. Then, click

OK.
4 Right-click the text, “Do you want to create a question dialog?”

Then, select Property Inspector from the context menu.
5 In the Property Inspector, select the String property. Then, change the existing

value to: Are you sure you want to close?

Then press Enter.

8 Examples of GUIDE UIs

8-2

6 Select File > Save As.
7 In the Save As dialog box, in the File name field, type modaldlg.fig.

Create the Program That Opens the Dialog Box
Create a separate UI containing a Close button:

1 While still in GUIDE, select File > New.
2 In the GUIDE Quick Start dialog box, select Blank GUI (Default). Then, click OK.
3 From the component palette on the left, drag a push button into the layout area.
4 Right-click the push button and select Property Inspector.
5 In the Property Inspector, select the String property. Then, change the existing

value to Close. Then press Enter.

 Modal Dialog Box in GUIDE

8-3

6 From the File menu, select Save.
7 In the Save dialog box, in the File name field, type closedlg.fig. Then, click

Save.

The code file, closedlg.m, opens in the Editor.

On the Editor tab, in the Navigate section, click Go To, and then select
pushbutton1_Callback.

Then, locate the following generated code in the Editor:
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to close_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

8 Add the following code immediately after the comment that begins with %
handles....
% Get the current position from the handles structure
% to pass to the modal dialog.

8 Examples of GUIDE UIs

8-4

pos_size = get(handles.figure1,'Position');

% Call modaldlg with the argument 'Position'.
user_response = modaldlg('Title','Confirm Close');
switch user_response
case 'No'
 % take no action
case 'Yes'
 % Prepare to close application window
 delete(handles.figure1)
end

When the user clicks the Close button in the closedlg window, the
pushbutton1_Callback function executes this command:

user_response = modaldlg('Title','Confirm Close');

Recall that the modaldlg function is coded in the other program file, modaldlg.m.
That function displays a second window: the Confirm Close dialog box. The return
argument, user_response, is the user’s selection from that dialog box.

The switch command decides whether to close the first window (modaldlg) based on
the user’s selection.

9 Save your code by pressing Save in the Editor Toolstrip.

Run the Program
1 In the Command Window, execute the command, closedlg.
2 MATLAB displays the closedlg window. Click the Close push button to execute

pushbutton1_Callback (in closedlg.m). That function calls modaldlg to display
the Confirm Close dialog box.

 Modal Dialog Box in GUIDE

8-5

3 Click one of the buttons in the Confirm Close dialog box. When you click one of the
buttons, modaldlg.m closes the Confirm Close dialog box and returns your selection
to the calling function (pushbutton1_Callback). Then, the switch command in
that function decides whether to close the remaining open window.

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Dialog Boxes”
• “Write Callbacks in GUIDE” on page 7-2

8 Examples of GUIDE UIs

8-6

GUIDE App With Parameters for Displaying Plots
This example shows how to examine and run a prebuilt GUIDE app. The app contains
three edit fields and two axes. The axes display the frequency and time domain
representations of a function that is the sum of two sine waves. The top two edit fields
contain the frequency for each component sine wave. The third edit field contains the
time range and sampling rate for the plots.

Open and Run the Example
Open and run the app. Change the default values in the f1 and f2 fields to change the
frequency for each component sine wave. You can also change the three numbers
(separated by colons) in the t field. The first and last numbers specify the window of time
to sample the function. The middle number specifies the sampling rate.

Press the Plot button to see the graph of the function in the frequency and time domains.

 GUIDE App With Parameters for Displaying Plots

8-7

Examine the Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

f1_input_Callback and f2_input_Callback

The f1_input_Callback function executes when the user changes the value in the f1
edit field. The f2_input_Callback function responds to changes in the f2 field, and it is

8 Examples of GUIDE UIs

8-8

almost identical to the f1_input_Callback function. Both functions check for valid user
input. If the value in the edit field is invalid, the Plot button is disabled. Here is the code
for the f1_input_Callback function.

f1 = str2double(get(hObject,'String'));
if isnan(f1) || ~isreal(f1)
 % Disable the Plot button and change its string to say why
 set(handles.plot_button,'String','Cannot plot f1');
 set(handles.plot_button,'Enable','off');
 % Give the edit text box focus so user can correct the error
 uicontrol(hObject);
else
 % Enable the Plot button with its original name
 set(handles.plot_button,'String','Plot');
 set(handles.plot_button,'Enable','on');
end

t_input_Callback

The t_input_Callback function executes when the user changes the value in the t edit
field. This try block checks the value to make sure that it is numeric, that its length is
between 2 and 1000, and that the vector is monotonically increasing.

try
 t = eval(get(handles.t_input,'String'));
 if ~isnumeric(t)
 % t is not a number
 set(handles.plot_button,'String','t is not numeric')
 elseif length(t) < 2
 % t is not a vector
 set(handles.plot_button,'String','t must be vector')
 elseif length(t) > 1000
 % t is too long a vector to plot clearly
 set(handles.plot_button,'String','t is too long')
 elseif min(diff(t)) < 0
 % t is not monotonically increasing
 set(handles.plot_button,'String','t must increase')
 else
 % Enable the Plot button with its original name
 set(handles.plot_button,'String','Plot')
 set(handles.plot_button,'Enable','on')
 return
 end

 GUIDE App With Parameters for Displaying Plots

8-9

 catch EM
 % Cannot evaluate expression user typed
 set(handles.plot_button,'String','Cannot plot t');
 uicontrol(hObject);
end

The catch block changes the label on the Plot button to indicate that an input value was
invalid. The uicontrol command sets the focus to the field that contains the erroneous
value.

plot_button_Callback

The plot_button_Callback function executes when the user clicks the Plot button.

First, the callback gets the values in the three edit fields:

f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t_input,'String'));

Then callback uses values of f1, f2, and t to sample the function in the time domain and
calculate the Fourier transform. Then, the two plots are updated:

% Create frequency plot in proper axes
plot(handles.frequency_axes,f,m(1:257));
set(handles.frequency_axes,'XMinorTick','on');
grid(handles.frequency_axes,'on');

% Create time plot in proper axes
plot(handles.time_axes,t,x);
set(handles.time_axes,'XMinorTick','on');
grid on

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2
• “Share Data Among Callbacks” on page 11-2

8 Examples of GUIDE UIs

8-10

GUIDE App Containing Tables and Plots
This example shows how to examine and run a prebuilt GUIDE app. The app contains two
tables, two axes, and a pop-up menu. The larger table on the left displays 288 entries of
sunspot data. The top axes displays the graph of all 288 entries. When you select 11 or
more items from the table on the left, the graph of the selected entries displays in the
bottom axes. The table in the lower right corner displays a statistical summary of the
sunspot data. The pop-up menu at the top of the window allows you to toggle between
graphs in the time and frequency domains.

Open and Run the Example
Open and run the app. Select 11 or more rows in the Data Set table to see a plot of those
points on the bottom set of axes. As you modify your selection, the numbers in the second
column of the Data Statistics table update.

 GUIDE App Containing Tables and Plots

8-11

Examine the Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

8 Examples of GUIDE UIs

8-12

plot_type_Callback

The plot_type_Callback function executes when the user changes the selection in the
pop-up menu at the top of the window. The following statements get the currently
selected menu item and update the label above the axes.

index = get(hObject,'Value');
strlist = get(hObject,'String');
set(handles.uipanel3,'Title',strlist(index))

These commands get all 288 entries in the table and plot them in the top axes. The
refreshDisplays function is a locally defined function.

table = get(handles.data_table,'Data');
refreshDisplays(table, handles, 1);

These commands update the bottom plot and the statistical summary table if more than
10 entries are selected.

selection = handles.currSelection;
if length(selection) > 10
 refreshDisplays(table(selection,:), handles, 2)
else
 % Do nothing; insufficient observations for statistics
end

data_table_CellSelectionCallback

The data_table_CellSelectionCallback function executes when the user selects
any of the cells in the larger table on the left. This command gets the currently selected
entries in the table:

selection = eventdata.Indices(:,1);

These commands update the currSelection field of the handles structure so that the
user’s selection can be accessed from within other callbacks such as the
plot_type_Callback function.

handles.currSelection = selection;
guidata(hObject,handles);

Finally, refreshDisplays updates the bottom plot and the statistical summary table.

refreshDisplays(table(selection,:),handles,2);

 GUIDE App Containing Tables and Plots

8-13

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2
• “Share Data Among Callbacks” on page 11-2

8 Examples of GUIDE UIs

8-14

Interactive List Box App in GUIDE
This example shows how to examine and run a prebuilt GUIDE app. The app contains a
list box that displays the files in a particular folder. When you double-click an item in the
list, MATLAB opens the item.

Open and Run The Example
Open the app in GUIDE, and click the Run Figure (green play button) to run it.

 Interactive List Box App in GUIDE

8-15

Alternatively, you can call the lbox2 function in the Command Window with the 'dir'
name-value pair argument. The name-value pair argument allows you to list the contents
of any folder. For example, this command lists the files in the C:\ folder on a Windows®
system:

lbox2('dir','C:\')

8 Examples of GUIDE UIs

8-16

Note: Before you can call lbox2 in the Command Window, you must save the GUIDE files
in a folder on your MATLAB® path. To save the files, select File > Save As in GUIDE.

Examine the Layout and Callback Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

lbox2_OpeningFcn

The callback function lbox2_OpeningFcn executes just before the list box appears in
the UI for the first time. The following statements determine whether the user specified a
path argument to the lbox2 function.

if nargin == 3,
 initial_dir = pwd;
elseif nargin > 4
 if strcmpi(varargin{1},'dir')
 if exist(varargin{2},'dir')
 initial_dir = varargin{2};

 Interactive List Box App in GUIDE

8-17

 else
 errordlg('Input must be a valid directory','Input Argument Error!')
 return
 end
 else
 errordlg('Unrecognized input argument','Input Argument Error!');
 return;
 end
end

If nargin==3, then the only input arguments to lbox2_OpeningFcn are hObject,
eventdata, and handles. Therefore, the user did not specify a path when they called
lbox2, so the list box shows the contents of the current folder. If nargin>4, then the
varargin input argument contains two additional items (suggesting that the user did
specify a path). Thus, subsequent if statements check to see whether the path is valid.

listbox1_callback

The callback function listbox1_callback executes when the user clicks a list box item.
This statement, near the beginning of the function, returns true whenever the user
double-clicks an item in the list box:

if strcmp(get(handles.figure1,'SelectionType'),'open')

If that condition is true, then listbox1_callback determines which list box item the
user selected:

index_selected = get(handles.listbox1,'Value');
file_list = get(handles.listbox1,'String');
filename = file_list{index_selected};

The rest of the code in this callback function determines how to open the selected item
based on whether the item is a folder, FIG file, or another type of file:

 if handles.is_dir(handles.sorted_index(index_selected))
 cd (filename)
 load_listbox(pwd,handles)
 else
 [path,name,ext] = fileparts(filename);
 switch ext
 case '.fig'
 guide (filename)
 otherwise
 try

8 Examples of GUIDE UIs

8-18

 open(filename)
 catch ex
 errordlg(...
 ex.getReport('basic'),'File Type Error','modal')
 end
 end
 end

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2
• “Share Data Among Callbacks” on page 11-2

 See Also

8-19

Plot Workspace Variables in a GUIDE App
In this section...
“Open and Run the App” on page 8-20
“Examine the Code” on page 8-21

This example shows how to examine and run a prebuilt GUIDE app. The app contains a
list box that displays the variables in your MATLAB workspace. The button below the list
box refreshes the list. The three buttons on the right plot the selected variables using
different scales for the x and y axes.

Open and Run the App
Open and run the app. Select one variable in the list box, and then hold the Ctrl key to
select a second variable. Then click Plot, Semilogx, or Semilogy to plot the variables.

8 Examples of GUIDE UIs

8-20

Examine the Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

update_button_Callback

The update_button_Callback function executes when the user clicks the Update
Listbox button. It contains one command that calls another local function,
update_listbox. (That function is kept separate so it can be reused elsewhere in the
app.)

The update_listbox function executes the who command in the MATLAB workspace to
get the list of current variables. Then it sets the contents of the list box to that list of
variables.

vars = evalin('base','who');
set(handles.listbox1,'String',vars)

 Plot Workspace Variables in a GUIDE App

8-21

plot_button_Callback

The plot_button_Callback function executes when the user presses the Plot button.
The callbacks for the Semilogx and Semilogy buttons contain most of the same code.

First, the function calls the local function get_var_names, which returns the two
selected variables in the list.

[x,y] = get_var_names(handles);

Then it checks to make sure at least one variable is selected. If no variables are selected,
the callback returns and does not plot anything.

if isempty(x) && isempty(y)
 return
end

Finally, the plot command executes from within the base workspace.

try
 evalin('base',['plot(',x,',',y,')'])
catch ex
 errordlg(ex.getReport('basic'),...
 'Error generating linear plot','modal')
end

The catch block presents an error dialog box if an error occurs.

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2
• “Share Data Among Callbacks” on page 11-2

8 Examples of GUIDE UIs

8-22

Automatically Refresh Plot in a GUIDE App
This example shows how to examine and run a prebuilt GUIDE app. The app displays a
surface plot, adds random noise to the surface, and refreshes the plot at regular intervals.
The app contains two buttons: one that starts adding random noise to the plot, and
another that stops adding noise. The slider below the plot allows the user to set the
refresh period between 0.01 and 2 seconds.

Open and Run the Example
Open and run the app. Move the slider to set the refresh interval between 0.01 and 2.0
seconds. Then click the Start Randomizing button to start adding random noise to the
plotted function. Click the Stop Randomizing button to stop adding noise and refreshing
the plot.

 Automatically Refresh Plot in a GUIDE App

8-23

Examine the Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

8 Examples of GUIDE UIs

8-24

ex_guide_timergui_OpeningFcn

The ex_guide_timergui_OpeningFcn function executes when the app opens and
starts running. This command creates the timer object and stores it in the handles
structure.

handles.timer = timer(...
 'ExecutionMode', 'fixedRate', ... % Run timer repeatedly.
 'Period', 1, ... % Initial period is 1 sec.
 'TimerFcn', {@update_display,hObject}); % Specify callback function.

The callback function for the timer is update_display, which is defined as a local
function.

update_display

The update_display function executes when the specified timer period elapses. The
function gets the values in the ZData property of the Surface object and adds random
noise to it. Then it updates the plot.

handles = guidata(hfigure);
Z = get(handles.surf,'ZData');
Z = Z + 0.1*randn(size(Z));
set(handles.surf,'ZData',Z);

periodsldr_Callback

The periodsldr_Callback function executes when the user moves the slider. It
calculates the timer period by getting the slider value and truncating it. Then it updates
the label below the slider and updates the period of the timer object.

% Read the slider value
period = get(handles.periodsldr,'Value');
% Truncate the value returned by the slider.
period = period - mod(period,.01);
% Set slider readout to show its value.
set(handles.slidervalue,'String',num2str(period))
% If timer is on, stop it, reset the period, and start it again.
if strcmp(get(handles.timer, 'Running'), 'on')
 stop(handles.timer);
 set(handles.timer,'Period',period)
 start(handles.timer)
else % If timer is stopped, reset its period.
 set(handles.timer,'Period',period)
end

 Automatically Refresh Plot in a GUIDE App

8-25

startbtn_Callback

The startbtn_Callback function calls the start method of the timer object if the
timer is not already running.

if strcmp(get(handles.timer, 'Running'), 'off')
 start(handles.timer);
end

stopbtn_Callback

The stopbtn_Callback function calls the stop method of the timer object if the timer
is currently running.

if strcmp(get(handles.timer, 'Running'), 'on')
 stop(handles.timer);
end

figure1_CloseRequestFcn

The figure1_CloseRequestFcn callback executes when the user closes the app. The
function stops the timer object if it is running, deletes the timer object, and then
deletes the figure window.

if strcmp(get(handles.timer, 'Running'), 'on')
 stop(handles.timer);
end
% Destroy timer
delete(handles.timer)
% Destroy figure
delete(hObject);

See Also

Related Examples
• “Timer Callback Functions”
• “Write Callbacks in GUIDE” on page 7-2

8 Examples of GUIDE UIs

8-26

Create UIs Programmatically
• “Lay Out a UI Programmatically” on page 9-25
• “Create Menus for Programmatic Apps” on page 9-38
• “Create Toolbars for Programmatic Apps” on page 9-51
• “Create a Simple App Programmatically” on page 3-2
• “Write Callbacks for Apps Created Programmatically” on page 10-5
• “Callbacks for Specific Components” on page 7-12
• “Share Data Among Callbacks” on page 11-2

27

Lay Out a Programmatic UI

• “Structure of Programmatic App Code Files” on page 9-2
• “Add Components to a Programmatic App” on page 9-4
• “Lay Out a UI Programmatically” on page 9-25
• “Customize Tabbing Behavior in a Programmatic App” on page 9-34
• “Create Menus for Programmatic Apps” on page 9-38
• “Create Toolbars for Programmatic Apps” on page 9-51
• “DPI-Aware Behavior in MATLAB” on page 9-58

9

Structure of Programmatic App Code Files
In this section...
“File Organization” on page 9-2
“File Template” on page 9-2
“Run the Program” on page 9-3

File Organization
Typically, the code file for an app has the following ordered sections. You can help to
maintain the structure by adding comments that name the sections when you first create
them.

1 Comments displayed in response to the MATLAB help command.
2 Initialization tasks such as data creation and any processing that is needed to

construct the components. See “Initialize a Programmatic App” on page 10-2 for
more information.

3 Construction of figure and components.
4 Initialization tasks that require the components to exist, and output return. See

“Initialize a Programmatic App” on page 10-2 for more information.
5 Callbacks for the components. Callbacks are the routines that execute in response to

user-generated events such as mouse clicks and key strokes. See “Write Callbacks for
Apps Created Programmatically” on page 10-5 for more information.

6 Utility functions.

File Template
This is a template you can use to create an app code file:

function varargout = myui(varargin)
% MYUI Brief description of program.
% Comments displayed at the command line in response
% to the help command.

% (Leave a blank line following the help.)

% Initialization tasks

9 Lay Out a Programmatic UI

9-2

% Construct the components

% Initialization tasks

% Callbacks for MYUI

% Utility functions for MYUI

end

Save the file in your current folder or at a location that is on your MATLAB path.

Run the Program
You can display your UI at any time by executing the code file. For example, if your code
file is myui.m, type

myui

at the command line. Provide run-time arguments as appropriate. The file must reside on
your path or in your current folder.

When you execute the code, a fully functional copy of the UI displays on the screen. If the
file includes code to initialize the app and callbacks to service the components, you can
manipulate components that it contains.

See Also

Related Examples
• “Create a Simple App Programmatically” on page 3-2

 See Also

9-3

Add Components to a Programmatic App
User interface controls are common UI components, such as buttons, check boxes, and
sliders. Tables present data in rows and columns. Panels and button groups are
containers in which you can group together related elements in your UI. ActiveX
components enable you to display ActiveX controls.

User Interface Controls
Push Button

This code creates a push button:

f = figure;
pb = uicontrol(f,'Style','pushbutton','String','Button 1',...
 'Position',[50 20 60 40]);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','pushbutton', the uicontrol to be a push
button.

9 Lay Out a Programmatic UI

9-4

'String','Button 1' add the label, Button 1 to the push button.

'Position',[50 20 60 40] specifies the location and size of the push button. In this
example, the push button is 60 pixels wide and 40 high. It is positioned 50 pixels from the
left of the figure and 20 pixels from the bottom.

Displaying an Icon on a Push Button

To add an icon to a push button, assign the button's CData property to be an m-by-n-by-3
array of RGB values that define a truecolor image.

Radio Button

This code creates a radio button:

f = figure;
r = uicontrol(f,'Style','radiobutton',...
 'String','Indent nested functions.',...
 'Value',1,'Position',[30 20 150 20]);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group. If you have multiple radio buttons, you can manage their selection by
specifying the parent to be a button group. See “Button Groups” on page 9-18 for more
information.

The name-value pair arguments, 'Style','radiobutton' specifies the uicontrol to a
radio button.

'String','Indent nested functions.' specifies a label for the radio button.

 Add Components to a Programmatic App

9-5

'Value',1 selects the radio button by default. Set the Value property to be the value of
the Max property to select the radio button. Set the value to be the value of the Min
property to deselect the radio button. The default values of Max and Min are 1 and 0,
respectively.

'Position',[30 20 150 20] specifies the location and size of the radio button. In this
example, the radio button is 150 pixels wide and 20 high. It is positioned 30 pixels from
the left of the figure and 20 pixels from the bottom.

Toggle Button

This code creates a toggle button:

f = figure;
tb = uicontrol(f,'Style','togglebutton',...
 'String','Left/Right Tile',...
 'Value',0,'Position',[30 20 100 30]);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','togglebutton', specify the uicontrol to be
a toggle button.

'String','Left/Right Tile' puts a text label on the toggle button.

The 'Value',0 deselects the toggle button by default. To select (raise) the toggle button,
set Value equal to the Max property. To deselect the toggle button, set Value equal to
the Min property. By default, Min = 0 and Max = 1.

9 Lay Out a Programmatic UI

9-6

'Position',[30 20 100 30] specifies the location and size of the toggle button. In
this example, the toggle button is 100 pixels wide and 30 pixels high. It is positioned 30
pixels from the left of the figure and 20 pixels from the bottom.

Note You can also display an icon on a toggle button. See “Displaying an Icon on a Push
Button” on page 9-5 for more information.

Check Box

This code creates a check box:

f = figure;
c = uicontrol(f,'Style','checkbox',...
 'String','Display file extension',...
 'Value',1,'Position',[30 20 130 20]);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','checkbox', specify the uicontrol to be a
check box.

The next pair, 'String','Display file extension' puts a text label on the check
box.

The Value property specifies whether the box is checked. Set Value to the value of the
Max property (default is 1) to create the component with the box checked. Set Value to
Min (default is 0) to leave the box unchecked. Correspondingly, when the user clicks the

 Add Components to a Programmatic App

9-7

check box, MATLAB sets Value to Max when the user checks the box and to Min when
the user unchecks it.

The Position property specifies the location and size of the check box. In this example,
the check box is 130 pixels wide and 20 high. It is positioned 30 pixels from the left of the
figure and 20 pixels from the bottom.

Slider

This code creates a slider:

f = figure;
s = uicontrol(f,'Style','slider',...
 'Min',0,'Max',100,'Value',25,...
 'SliderStep',[0.05 0.2],...
 'Position',[30 20 150 30]);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','slider' specifies the uicontrol to be a
slider.

'Min',0 and 'Max',100 specify the range of the slider to be [0, 100]. The Min property
must be less than Max.

'Value',25 sets the default slider position to 25. The number you specify for this
property must be within the range, [Min, Max].

9 Lay Out a Programmatic UI

9-8

'SliderStep',[0.05 0.2] specifies the fractional amount that the thumb moves when
the user clicks the arrow buttons or the slider trough (also called the channel). In this
case, the slider’s thumb position changes by the smaller amount (5 percent) when the
user clicks an arrow button. It changes by the larger amount (20 percent) when the user
clicks the trough.

Specify SliderStep to be a two-element vector, [minor_step major_step]. The
value of minor_step must be less than or equal to major_step. To ensure the best
results, do not specify either value to be less than 1e-6. Setting major_step to 1 or
higher causes the thumb to move to Max or Min when the trough is clicked.

As major_step increases, the thumb grows longer. When major_step is 1, the thumb is
half as long as the trough. When major_step is greater than 1, the thumb continues to
grow, slowly approaching the full length of the trough. When a slider serves as a scroll
bar, you can uses this behavior to indicate how much of the document is currently visible
by changing the value of major_step.

'Position',[30 20 150 30] specifies the location and size of the slider. In this
example, the slider is 150 pixels wide and 30 high. It is positioned 30 pixels from the left
of the figure and 20 pixels from the bottom.

Note On Mac platforms, the height of a horizontal slider is constrained. If the height you
set in the Position property exceeds this constraint, the displayed height of the slider is
the maximum allowed by the system. However, the value of the Position property does
not change to reflect this constraint.

Static Text

This code creates a static text component:

f = figure;
t = uicontrol(f,'Style','text',...
 'String','Select a data set.',...
 'Position',[30 50 130 30]);

 Add Components to a Programmatic App

9-9

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','text' specify the uicontrol to be static text.

'String','Select a set' specifies the text that displays. If you specify a component
width that is too small to accommodate all of the text, MATLAB wraps the text.

'Position',[30 50 130 30] specifies the location and size of the static text. In this
example, the static text is 130 pixels wide and 20 high. It is positioned 30 pixels from the
left of the figure and 50 pixels from the bottom.

Editable Text Field

This code creates an editable text field, txtbox:

f = figure;
txtbox = uicontrol(f,'Style','edit',...
 'String','Enter your name here.',...
 'Position',[30 50 130 20]);

9 Lay Out a Programmatic UI

9-10

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','edit', specify the style of the uicontrol to
be an editable text field.

'String','Enter your name here', specifies the default text to display.

The next pair, 'Position',[30 50 130 20] specifies the location and size of the text
field. In this example, the text field is 130 pixels wide and 20 pixels high. It is positioned
30 pixels from the left of the figure and 50 pixels from the bottom.

To enable multiple-line input, the value of Max - Min must be greater than 1, as in the
following statement.

txtbox = uicontrol(f,'Style','edit',...
 'String','Enter your name and address here.',...
 'Max',2,'Min',0,...
 'Position',[30 20 130 80]);

 Add Components to a Programmatic App

9-11

If the value of Max - Min is less than or equal to 1, the editable text field allows only a
single line of input. If the width of the text field is too narrow for the text, MATLAB
displays only part of the text. The user can use the arrow keys to move the cursor over
the entire line of text.

Pop-Up Menu

This code creates a pop-up menu:

f = figure;
pm = uicontrol(f,'Style','popupmenu',...
 'String',{'one','two','three','four'},...
 'Value',1,'Position',[30 80 130 20]);

9 Lay Out a Programmatic UI

9-12

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, Style,'popupmenu', specify the uicontrol to be a pop-
up menu.

'String',{'one','two','three','four'} defines the menu items.

'Value',1 sets the index of the item that is selected by default. Set Value to a scalar
that indicates the index of the selected item. A value of 1 selects the first item.

'Position',[30 80 130 20] specifies the location and size of the pop-up menu. In
this example, the pop-up menu is 130 pixels wide. It is positioned 30 pixels from the left
of the figure and 80 pixels from the bottom. The height of a pop-up menu is determined by
the font size; the height you set in the position vector is ignored.

List Box

This code creates a list box:

f = figure;
lb = uicontrol(f,'Style','listbox',...

 Add Components to a Programmatic App

9-13

 'String',{'one','two','three','four'},...
 'Position',[30 20 130 80],'Value',1);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','listbox', specify the uicontrol to be a list
box.

'String',{'one','two','three','four'} defines the list items.

'Position',[30 20 130 80] specifies the location and size of the list box. In this
example, the list box is 130 pixels wide and 80 high. It is positioned 30 pixels from the left
of the figure and 20 pixels from the bottom.

The final pair of arguments, Value,1 sets the list selection to the first item in the list. To
select a single item, set the Value property to be a scalar that indicates the position of
the item in the list.

To select more than one item, set the Value property to be a vector of values. To enable
your users to select multiple items, set the values of the Min and Max properties such that
Max - Min is greater than 1. Here is a list box that allows multiple selections and has
two items selected initially:

9 Lay Out a Programmatic UI

9-14

lb = uicontrol(f,'Style','listbox',...
 'String',{'one','two','three','four'},...
 'Max',2,'Min',0,'Value',[1 3],...
 'Position',[30 20 130 80]);

If you want no initial selection, set these property values:

• Set the Max and Min properties such that Max - Min is greater than 1.
• Set the Value property to an empty matrix [].

If the list box is not large enough to display all list entries, you can set the ListBoxTop
property to the index of the item you want to appear at the top when the component is
created.

Tables
This code creates a table and populates it with the values returned by magic(5).

f = figure;
tb = uitable(f,'Data',magic(5));

The first uitable argument, f, specifies the parent container. In this case, the parent is a
figure, but you can also specify the parent to be any container, such as a panel or button
group.

 Add Components to a Programmatic App

9-15

The name-value pair arguments, 'Data',magic(5), specifies the table data. In this
case, the data is the 5-by-5 matrix returned by the magic(5) command.

You can adjust the width and height of the table to accommodate the extent of the data.
The uitable’s Position property controls the outer bounds of the table, and the Extent
property indicates the extent of the data. Set the last two values in the Position
property to the corresponding values in the Extent property:

tb.Position(3) = tb.Extent(3);
tb.Position(4) = tb.Extent(4);

You can change several other characteristics of the table by setting certain properties:

• To control the user’s ability to edit the table cells, set the ColumnEditable property.
• To make your application respond when the user edits a cell, define a

CellEditCallback function.
• To add or change row striping, set the RowStriping property.
• To specify row and column names, set the RowName and ColumnName properties.
• To format the data in the table, set the ColumnFormat property.

See Uitable for the entire list of properties.

If you are building an app using GUIDE, you can set many of the uitable properties using
the Table Property Editor. For more information, see “Create a Table” on page 6-49.

Panels
This code creates a panel:

f = figure;
p = uipanel(f,'Title','My Panel',...
 'Position',[.25 .1 .5 .8]);

9 Lay Out a Programmatic UI

9-16

The first argument passed to uipanel, f, specifies the parent container. In this case, the
parent is a figure, but you can also specify the parent to be any container, such as another
panel or a button group.

'Title','My Panel' specifies a title to display on the panel.

'Position',[.25 .1 .5 .8] specifies the location and size of the panel as a fraction
of the parent container. In this case, the panel is 50 percent of the width of the figure and
80 percent of its height. The left edge of the panel is located at 25 percent of the figure’s
width from the left. The bottom of the panel is located 10 percent of the figure’s height
from the bottom. If the figure is resized, the panel retains its original proportions.

The following commands add two push buttons to the panel. Setting the Units property
to 'normalized' causes the Position values to be interpreted as fractions of the
parent panel. Normalized units allow the buttons to retain their original proportions when
the panel is resized.

 Add Components to a Programmatic App

9-17

b1 = uicontrol(p,'Style','pushbutton','String','Button 1',...
 'Units','normalized',...
 'Position',[.1 .55 .8 .3]);
b2 = uicontrol(p,'Style','pushbutton','String','Button 2',...
 'Units','normalized',...
 'Position',[.1 .15 .8 .3]);

Button Groups
This code creates a button group:

f = figure;
bg = uibuttongroup(f,'Title','My Button Group',...
 'Position',[.1 .2 .8 .6]);

9 Lay Out a Programmatic UI

9-18

The first argument passed to uibuttongroup, f, specifies the parent container. In this
case, the parent is a figure, but you can also specify the parent to be any container, such
as a panel or another button group.

'Title','My Button Group' specifies a title to display on the button group.

'Position',[.1 .2 .8 .6] specifies the location and size of the button group as a
fraction of the parent container. In this case, the button group is 80 percent of the width
of the figure and 60 percent of its height. The left edge of the button group is located at
10 percent of the figure’s width from the left. The bottom of the button group is located
20 percent of the figure’s height from the bottom. If the figure is resized, the button
group retains its original proportions.

The following commands add two radio buttons to the button group. Setting the Units
property to 'normalized' causes the Position values to be interpreted as fractions of
the parent panel. Normalized units allow the buttons to retain their original relative
positions when the button group is resized.

 Add Components to a Programmatic App

9-19

rb1 = uicontrol(bg,'Style','radiobutton','String','Red',...
 'Units','normalized',...
 'Position',[.1 .6 .3 .2]);
rb2 = uicontrol(bg,'Style','radiobutton','String','Blue',...
 'Units','normalized',...
 'Position',[.1 .2 .3 .2]);

By default, the first radio button added to the uibuttongroup is selected. To override this
default, set any other radio button’s Value property to its Max property value.

Button groups manage the selection of radio buttons and toggle buttons by allowing only
one button to be selected within the group. You can determine the currently selected
button by querying the uibuttongroup’s SelectedObject property.

Axes
This code creates an axes in a figure:

9 Lay Out a Programmatic UI

9-20

f = figure;
ax = axes('Parent',f,'Position',[.15 .15 .7 .7]);

The first two arguments passed to the axes function, 'Parent',f specify the parent
container. In this case, the parent is a figure, but you can also specify the parent to be any
container, such as a panel or button group.

'Position',[.15 .15 .7 .7] specifies the location and size of the axes as a fraction
of the parent figure. In this case, the axes is 70 percent of the width of the figure and 70
percent of its height. The left edge of the axes is located at 15 percent of the figure’s
width from the left. The bottom of the axes is located 15 percent of the figure’s height
from the bottom. If the figure is resized, the axes retains its original proportions.

 Add Components to a Programmatic App

9-21

Prevent Customized Axes Properties from Being Reset

Data graphing functions, such as plot, image, and scatter, reset axes properties
before they draw into an axes. This can be a problem when you want to maintain
consistency of axes limits, ticks, colors, and font characteristics in a UI.

The default value of the NextPlot axes property, 'replace' allows the graphing
functions to reset many property values. In addition, the 'replace' property value
allows MATLAB to remove all callbacks from the axes whenever a graph is plotted. If you
place an axes in a UI, consider setting the NextPlot property to 'replacechildren'.
You might need to set this property prior to changing the contents of an axes:

ax.NextPlot = 'replacechildren';

ActiveX Controls
ActiveX components enable you to display ActiveX controls in your UI. They are available
only on the Microsoft Windows platform.

An ActiveX control can be the child only of a figure. It cannot be the child of a panel or
button group.

See “Creating an ActiveX Control” about adding an ActiveX control to a figure. See
“Create COM Objects” for general information about ActiveX controls.

How to Set Font Characteristics
Use the FontName property to specify a particular font for a user interface control, panel,
button group, table, or axes.

Use the uisetfont function to display a dialog that allows you to choose a font, style,
and size all at once:

myfont = uisetfont

9 Lay Out a Programmatic UI

9-22

uisetfont returns the selections as a structure array:

myfont =

 struct with fields:

 FontName: 'Century Schoolbook'
 FontWeight: 'normal'
 FontAngle: 'normal'
 FontUnits: 'points'
 FontSize: 9

You can use this information to set font characteristics of a component in the UI:

btn = uicontrol;
btn.FontName = myfont.FontName;
btn.FontSize = myfont.FontSize;

Alternatively, you can set all the font characteristics at once:

 Add Components to a Programmatic App

9-23

set(btn,myfont);

See Also

Related Examples
• “Callbacks for Specific Components” on page 7-12
• “Write Callbacks for Apps Created Programmatically” on page 10-5

9 Lay Out a Programmatic UI

9-24

Lay Out a UI Programmatically
You can adjust the size and location of components, and manage front-to-back order of
grouped components by setting certain property values. This topic explains how to use
these properties to get the layout you want. It also explains how to use the
SizeChangedFcn callback to control the UI’s resizing behavior.

Component Placement and Sizing
A UI layout consists of a figure and one or more components that you place inside the
figure. Accurate placement and sizing of each component involves setting certain
properties and understanding how the inner and outer boundaries of the figure relate to
each other.

Location and Size of Outer Bounds and Drawable Area

The area inside the figure, which contains the UI components, is called the drawable
area. The drawable area excludes the figure borders, title bar, menu bar, and tool bars.
You can control the location and size of the drawable area by setting the Position
property of the figure as a four-element row vector. The first two elements of this vector
specify the location. The last two elements specify the size. By default, the figure’s
Position values are in pixels.

This command creates a figure and sets the Position value. The left edge of the
drawable area is 258 pixels from the left side of the screen. Its bottom edge is 132 pixels
up from the bottom of the screen. Its size is 560 pixels wide by 420 pixels high:

f = figure('Position',[258 132 560 420]);

 Lay Out a UI Programmatically

9-25

You can query or change the outer bounds of the figure by using the OuterPosition
property. The region enclosed by the outer bounds of the figure includes the figure
borders, title bar, menu bar, and tool bars. Like the Position property, the
OuterPosition is a four element row vector:

f.OuterPosition

9 Lay Out a Programmatic UI

9-26

ans =

 250 124 576 512

The left outer edge of this figure is 250 pixels from the left side of the screen. Its bottom
outer edge is 124 pixels up from the bottom of the screen. The area enclosed by the outer
bounds of the figure is 576 pixels wide by 512 pixels high.

 Lay Out a UI Programmatically

9-27

Explicitly changing the Position or OuterPosition causes the other property to
change. For example, this is the current Position value of f:

f.Position

ans =

 258 132 560 420

Changing the OuterPosition causes the Position to change:

f.OuterPosition = [250 250 490 340];
f.Position

ans =

 258 258 474 248

Other UI components, such as uicontrols, uitables, and uipanels have a Position
property, which you can use to set their location and size.

Units of Measure

The default units associated with the Position property depend on the component you
are placing. However, you can change the Units property to lay out your UI in the units
of your choice. There are six different units of measure to choose from: inches,
centimeters, normalized, points, pixels, and characters.

Always specify Units before Position for the most predictable results.

f = figure('Units','inches','Position',[4 3 6 5]);

Your choice of units can affect the appearance and resizing behavior of the UI:

• If you want the UI components to scale proportionally with the figure when the user
resizes the figure, set the Units property of the components to 'normalized'.

• UI Components do not scale proportionally inside the figure when their Units
property is set to 'inches', 'centimeters', 'points', 'pixels', or
'characters'.

• If you are developing a cross-platform UI, then set the Units property to 'points'
or 'characters' to make the layout consistent across all platforms.

9 Lay Out a Programmatic UI

9-28

Example of a Simple Layout

Here is the code for a simple app containing an axes and a button. To see how it works,
copy and paste this code into the editor and run it.

function myui
 % Add the UI components
 hs = addcomponents;

 % Make figure visible after adding components
 hs.fig.Visible = 'on';

 function hs = addcomponents
 % add components, save handles in a struct
 hs.fig = figure('Visible','off',...
 'Resize','off',...
 'Tag','fig');
 hs.btn = uicontrol(hs.fig,'Position',[10 340 70 30],...
 'String','Plot Sine',...
 'Tag','button',...
 'Callback',@plotsine);
 hs.ax = axes('Parent',hs.fig,...
 'Position',[0.20 0.13 0.71 0.75],...
 'Tag','ax');
 end

 function plotsine(hObject,event)
 theta = 0:pi/64:6*pi;
 y = sin(theta);
 plot(hs.ax,theta,y);
 end
end

This code performs the following tasks:

• The main function, myui, calls the addcomponents function. The addcomponents
function returns a structure, hs, containing the handles to all the UI components.

• The addcomponents function creates a figure, an axes, and a button, each with
specific Position values.

• Notice that the Resize property of the figure is 'off'. This value disables the
resizing capability of the figure.

• Notice that the Visible property of the figure is 'off' inside the
addcomponents function. The value changes to 'on' after addcomponents

 Lay Out a UI Programmatically

9-29

returns to the calling function. Doing this delays the figure display until after
MATLAB adds all the components. Thus, the resulting UI has a clean appearance
when it starts up.

• The plotsine function plots the sine function inside the axes when the user clicks the
button.

Managing the Layout in Resizable UIs
To create a resizable UI and manage the layout when the user resizes the window, set the
figure’s SizeChangedFcn property to be a handle to a callback function. Code the
callback function to manage the layout when the window size changes.

If your UI has another container, such as a uipanel or uibuttongroup, you can manage the
layout of the container’s child components in a separate callback function that you assign
to the SizeChangedFcn property.

The SizeChangedFcn callback executes only under these circumstances:

9 Lay Out a Programmatic UI

9-30

• The container becomes visible for the first time.
• The container is visible while its drawable area changes.
• The container becomes visible for the first time after its drawable area changes. This

situation occurs when the drawable area changes while the container is invisible and
becomes visible later.

Note Typically, the drawable area changes at the same time the outer bounds change.
However, adding or removing menu bars or tool bars to a figure causes the outer bounds
to change while the drawable area remains constant. Therefore, the SizeChangedFcn
callback does not execute when you add or remove menu bars or tool bars.

This app is a resizable version of the simple app defined in “Example of a Simple Layout”
on page 9-29. This code includes a figure SizeChangedFcn callback called resizeui.
The resizeui function calculates new Position values for the button and axes when
the user resizes the window. The button appears to be stationary when the user resizes
the window. The axes scales with the figure.

function myui
 % Add the UI components
 hs = addcomponents;

 % Make figure visible after adding components
 hs.fig.Visible = 'on';

 function hs = addcomponents
 % Add components, save handles in a struct
 hs.fig = figure('Visible','off',...
 'Tag','fig',...
 'SizeChangedFcn',@resizeui);
 hs.btn = uicontrol(hs.fig,'String',...
 'Plot Sine',...
 'Callback',@plotsine,...
 'Tag','button');
 hs.ax = axes('Parent',hs.fig,...
 'Units','pixels',...
 'Tag','ax');
 end

 function plotsine(hObject,event)
 theta = 0:pi/64:6*pi;
 y = sin(theta);

 Lay Out a UI Programmatically

9-31

 plot(hs.ax,theta,y);
 end

 function resizeui(hObject,event)

 % Get figure width and height
 figwidth = hs.fig.Position(3);
 figheight = hs.fig.Position(4);

 % Set button position
 bheight = 30;
 bwidth = 70;
 bbottomedge = figheight - bheight - 50;
 bleftedge = 10;
 hs.btn.Position = [bleftedge bbottomedge bwidth bheight];

 % Set axes position
 axheight = .75*figheight;
 axbottomedge = max(0,figheight - axheight - 30);
 axleftedge = bleftedge + bwidth + 30;
 axwidth = max(0,figwidth - axleftedge - 50);
 hs.ax.Position = [axleftedge axbottomedge axwidth axheight];
 end
end

The resizeui function sets the location and size of the button and axes whenever the
user resizes the window:

• The button height, width, and left edge stay the same when the window resizes.
• The bottom edge of the button, bbottomedge, allows 50 pixels of space between the

top of the figure and the top of the button.
• The value of the axes height, axheight, is 75% of the available height in the figure.
• The value of the axes bottom edge, axbottomedge, allows 30 pixels of space between

the top of the figure and the top of the axes. In this calculation, the max function limits
this value to nonnegative values.

• The value of the axes width, axwidth, allows 50 pixels of space between the right side
of the axes and the right edge of the figure. In this calculation, the max function limits
this value to nonnegative values.

Notice that all the layout code is inside the resizeui function. It is a good practice to
put all the layout code inside the SizeChangedFcn callback to ensure the most accurate
results.

9 Lay Out a Programmatic UI

9-32

Also, it is important to delay the display of the entire UI window until after all the
variables that a SizeChangedFcn callback uses are defined. Doing so can prevent the
SizeChangedFcn callback from returning an error. To delay the display of the window,
set the Visible property of the figure to 'off'. After you define all the variables that
your SizeChangedFcn callback uses, set the Visible property to 'on'.

Manage the Stacking Order of Grouped Components
The default front-to-back order, or stacking order, of components in a UI is as follows:

• Axes and other graphics objects appear behind other components. UI components and
containers (uipanels, uibuttongroups, and uitabs) appear in front of them.

• UI components and containers appear in the order in which you create them. New
components appear in front of existing components.

You can change the stacking order at any time, but there are some restrictions. Axes and
other graphics objects can stack in any order with respect to each other. However, axes
and other graphics objects cannot stack in front of UI components and containers. They
always appear behind UI components and containers.

You can work around this restriction by grouping graphics objects into separate
containers. Then you can stack those containers in any order. To group a graphics object
into a container, set its Parent property to be that container. For example, you can group
an axes into a uipanel by setting the Parent property of the axes to be the uipanel.

The Children property of a uipanel, uibuttongroup, or uitab lists the child objects inside
the container according to their stacking order.

See Also

Related Examples
• “DPI-Aware Behavior in MATLAB” on page 9-58

 See Also

9-33

Customize Tabbing Behavior in a Programmatic App
In this section...
“How Tabbing Works” on page 9-34
“Default Tab Order” on page 9-34
“Change the Tab Order in the uipanel” on page 9-36

How Tabbing Works
The tab order is the order in which UI components acquire focus when the user presses
the keyboard Tab key. Focus is generally denoted by a border or a dotted border.

Tab order is determined separately for the children of each parent. For example, child
components of the figure window have their own tab order. Child components of each
panel or button group also have their own tab order.

If, in tabbing through the components at one level, a user tabs to a panel or button group,
then the tabbing sequences through the components of the panel or button group before
returning to the level from which the panel or button group was reached. For example, if
a figure window contains a panel that contains three push buttons and the user tabs to
the panel, then the tabbing sequences through the three push buttons before returning to
the figure.

Note You cannot tab to axes and static text components. You cannot determine
programmatically which component has focus.

Default Tab Order
The default tab order for each level is the order in which you create the components at
that level.

The following code creates a UI that contains a pop-up menu with a static text label, a
panel with three push buttons, and an axes.

fh = figure('Position',[200 200 450 270]);
pmh = uicontrol(fh,'Style','popupmenu',...
 'String',{'peaks','membrane','sinc'},...

9 Lay Out a Programmatic UI

9-34

 'Position',[290 200 130 20]);
sth = uicontrol(fh,'Style','text','String','Select Data',...
 'Position',[290 230 60 20]);
ph = uipanel('Parent',fh,'Units','pixels',...
 'Position',[290 30 130 150]);
ah = axes('Parent',fh,'Units','pixels',...
 'Position',[40 30 220 220]);
bh1 = uicontrol(ph,'Style','pushbutton',...
 'String','Contour','Position',[20 20 80 30]);
bh2 = uicontrol(ph,'Style','pushbutton',...
 'String','Mesh','Position',[20 60 80 30]);
bh3 = uicontrol(ph,'Style','pushbutton',...
 'String','Surf','Position',[20 100 80 30]);

You can obtain the default tab order for a figure, panel, or button group by looking at its
Children property. For the example, this command gets the children of the uipanel, ph.

ch = ph.Children

ch =

 Customize Tabbing Behavior in a Programmatic App

9-35

 3x1 UIControl array:

 UIControl (Surf)
 UIControl (Mesh)
 UIControl (Contour)

The default tab order is the reverse of the child order: Contour, then Mesh, then Surf.

Note Displaying the children in this way shows only those children that have their
HandleVisibility property set to 'on'. Use allchild to retrieve children regardless
of their handle visibility.

In this example, the default order is pop-up menu followed by the panel's Contour,
Mesh, and Surf push buttons (in that order), and then back to the pop-up menu. You
cannot tab to the axes component or the static text component.

Try modifying the code to create the pop-up menu following the creation of the Contour
push button and before the Mesh push button. Now execute the code to run the app and
tab through the components. This code change does not alter the default tab order. This is
because the pop-up menu does not have the same parent as the push buttons. The figure
is the parent of the panel and the pop-up menu.

Change the Tab Order in the uipanel
Get the Children property of the uipanel, and then modify the order of the array
elements. This code gets the children of the uipanel and stores it in the variable, ch.

ch = ph.Children

ch =

 3x1 UIControl array:

 UIControl (Surf)
 UIControl (Mesh)
 UIControl (Contour)

Next, call the uistack function to change the tab order of buttons. This code moves the
Mesh button up one level, making it the last item in the tab order.

uistack(ch(2),'up',1);

9 Lay Out a Programmatic UI

9-36

The tab order of the three buttons is now Contour, then Surf, then Mesh.

This command shows the new child order.

ph.Children

ans =

 3x1 UIControl array:

 UIControl (Mesh)
 UIControl (Surf)
 UIControl (Contour)

Note Tab order also affects the stacking order of components. If components overlap,
those that appear higher in the child order, display on top of those that appear lower in
the order.

 Customize Tabbing Behavior in a Programmatic App

9-37

Create Menus for Programmatic Apps
In this section...
“Add Menu Bar Menus” on page 9-38
“Add Context Menus to a Programmatic App” on page 9-46

Add Menu Bar Menus
Use the uimenu function to add a menu bar menu to your UI. A syntax for uimenu is

mh = uimenu(parent,'PropertyName',PropertyValue,...)

Where mh is the handle of the resulting menu or menu item. See the uimenu reference
page for other valid syntaxes.

These topics discuss use of the MATLAB standard menu bar menus and describe
commonly used menu properties and offer some simple examples.

• “Display Standard Menu Bar Menus” on page 9-38
• “How Menus Affect Figure Docking” on page 9-39
• “Menu Bar Menu” on page 9-41

Display Standard Menu Bar Menus

Displaying the standard menu bar menus is optional. This figure’s menu bar contains the
standard menus.

9 Lay Out a Programmatic UI

9-38

If you use the standard menu bar menus, any menus you create are added to it. If you
choose not to display the standard menu bar menus, the menu bar contains only the
menus that you create. If you display no standard menus and you create no menus, the
menu bar itself does not display.

Use the figure MenuBar property to display or hide the MATLAB standard menu bar
shown in the preceding figure. Set MenuBar to figure (the default) to display the
standard menus. Set MenuBar to none to hide them.

fh.MenuBar = 'figure'; % Display standard menu bar menus.
fh.MenuBar = 'none'; % Hide standard menu bar menus.

In these statements, fh is the handle of the figure.

How Menus Affect Figure Docking

When you customize the menu bar or toolbar, you can control the display of the window's
docking controls by setting the DockControls property. You might not need menus for
your app, but if you want the user to be able to dock or undock the window, it must

 Create Menus for Programmatic Apps

9-39

contain a menu bar or a toolbar. This is because docking is controlled by the docking icon,
a small curved arrow near the upper-right corner of the menu bar or the toolbar, as the
following illustration shows.

Figure windows with a standard menu bar also have a Desktop menu from which the
user can dock and undock them.

To display the docking arrow and the Desktop > Dock Figure menu item, the figure
property DockControls must be set to 'on'. You can set this property in the Property
Inspector. In addition, the MenuBar and/or ToolBar figure properties must be set to
'on' to display docking controls.

The WindowStyle figure property also affects docking behavior. The default is
'normal', but if you change it to 'docked', then the following applies:

• The UI opens docked in the desktop when you run the app.
• The DockControls property is set to 'on' and cannot be turned off until

WindowStyle is no longer set to 'docked'.
• If you undock a UI created with WindowStyle set to 'docked', the window will have

not have a docking arrow unless the figure displays a menu bar or a toolbar. When the
window has no docking arrow, users can undock it from the desktop, but will be
unable to redock it.

To summarize, you can display docking controls with the DockControls property as long
as it is not in conflict with the figure's WindowStyle property.

Note Modal dialogs (figures with the WindowStyle property set to 'modal') cannot
have menu bars, toolbars, or docking controls.

9 Lay Out a Programmatic UI

9-40

For more information, see the DockControls, MenuBar, ToolBar, and WindowStyle
property descriptions on the Figure page.

Menu Bar Menu

The following statements create a menu bar menu with two menu items.

mh = uimenu(fh,'Text','My menu');
eh1 = uimenu(mh,'Text','Item 1');
eh2 = uimenu(mh,'Text','Item 2','Checked','on');

fh is the handle of the parent figure.

mh is the handle of the parent menu.

The Text property specifies the text that appears in the menu.

The Checked property specifies that this item is displayed with a check next to it when
the menu is created.

If your UI displays the standard menu bar, the new menu is added to it.

 Create Menus for Programmatic Apps

9-41

If your UI does not display the standard menu bar, MATLAB creates a menu bar if none
exists and then adds the menu to it.

9 Lay Out a Programmatic UI

9-42

This command adds a separator line preceding the second menu item.

eh2.Separator = 'on';

 Create Menus for Programmatic Apps

9-43

The following statements add two menu subitems to Item 1, assign each subitem a
keyboard accelerator, and disable the first subitem.

seh1 = uimenu(eh1,'Text','Choice 1','Accelerator','C',...
 'Enable','off');
seh2 = uimenu(eh1,'Text','Choice 2','Accelerator','H');

9 Lay Out a Programmatic UI

9-44

The Accelerator property adds keyboard accelerators to the menu items. Some
accelerators may be used for other purposes on your system and other actions may result.

The Enable property disables the first subitem Choice 1 so a user cannot select it when
the menu is first created. The item appears dimmed.

Note After you have created all menu items, set their HandleVisibility properties
off by executing the following statements:

menuhandles = findall(figurehandle,'type','uimenu');
menuhandles.HandleVisibility = 'off';

See the section, “Menu Item” on page 7-22, for information about programming menu
items.

 Create Menus for Programmatic Apps

9-45

Add Context Menus to a Programmatic App
Context menus appear when the user right-clicks on a figure or UI component. Follow
these steps to add a context menu to your UI:

1 Create the context menu object using the uicontextmenu function.
2 Add menu items to the context menu using the uimenu function.
3 Associate the context menu with a graphics object using the object's

UIContextMenu property.

Create the Context Menu Object

Use the uicontextmenu function to create a context menu object. The syntax is

handle = uicontextmenu('PropertyName',PropertyValue,...)

The parent of a context menu must always be a figure. Use the Parent property to
specify the parent of a uicontextmenu. If you do not specify the Parent property, the
parent is the current figure as specified by the root CurrentFigure property.

The following code creates a figure and a context menu whose parent is the figure. At this
point, the figure is visible, but not the menu.

fh = figure('Position',[300 300 400 225]);
cmenu = uicontextmenu('Parent',fh,'Position',[10 215]);

Note “Force Display of the Context Menu” on page 9-49 explains the use of the
Position property.

Add Menu Items to the Context Menu

Use the uimenu function to add items to the context menu. The items appear on the menu
in the order in which you add them. The following code adds three items to the context
menu created above.

mh1 = uimenu(cmenu,'Text','Item 1');
mh2 = uimenu(cmenu,'Text','Item 2');
mh3 = uimenu(cmenu,'Text','Item 3');

You can specify any applicable Uimenu when you define the context menu items. See the
uimenu reference page and “Add Menu Bar Menus” on page 9-38 for information about

9 Lay Out a Programmatic UI

9-46

using uimenu to create menu items. Note that context menus do not have an
Accelerator property.

Note After you have created the context menu and all its items, set their
HandleVisibility properties to 'off' by executing the following statements:

cmenuhandles = findall(figurehandle,'type','uicontextmenu');
cmenuhandles.HandleVisibility = 'off';
menuitemhandles = findall(cmenuhandles,'type','uimenu');
menuitemhandles.HandleVisibility = 'off';

Associate the Context Menu with Graphics Objects

You can associate a context menu with the figure itself and with all components that have
a UIContextMenu property. This includes axes, panel, button group, all user interface
controls (uicontrols).

This code adds a panel and an axes to the figure. The panel contains a single push button.

ph = uipanel('Parent',fh,'Units','pixels',...
 'Position',[20 40 150 150]);
bh1 = uicontrol(ph,'String','Button 1',...
 'Position',[20 20 60 40]);
ah = axes('Parent',fh,'Units','pixels',...
 'Position',[220 40 150 150]);

 Create Menus for Programmatic Apps

9-47

This code associates the context menu with the figure and with the axes by setting the
UIContextMenu property of the figure and the axes to the handle cmenu of the context
menu.

fh.UIContextMenu = cmenu; % Figure
ah.UIContextMenu = cmenu; % Axes

Right-click on the figure or on the axes. The context menu appears with its upper-left
corner at the location you clicked. Right-click on the panel or its push button. The context
menu does not appear.

9 Lay Out a Programmatic UI

9-48

Force Display of the Context Menu

If you set the context menu Visible property on, the context menu is displayed at the
location specified by the Position property, without the user taking any action. In this
example, the context menu Position property is [10 215].

cmenu.Visible = 'on';

The context menu displays 10 pixels from the left of the figure and 215 pixels from the
bottom.

 Create Menus for Programmatic Apps

9-49

If you set the context menu Visible property to off, or if the user clicks outside the
context menu, the context menu disappears.

See Also
Menu | uimenu

Related Examples
• “Create Toolbars for Programmatic Apps” on page 9-51

9 Lay Out a Programmatic UI

9-50

Create Toolbars for Programmatic Apps
In this section...
“Use the uitoolbar Function” on page 9-51
“Commonly Used Properties” on page 9-51
“Toolbars” on page 9-52
“Display and Modify the Standard Toolbar” on page 9-55

Use the uitoolbar Function
Use the uitoolbar function to add a custom toolbar to your UI. Use the uipushtool
and uitoggletool functions to add push tools and toggle tools to a toolbar. A push tool
functions as a push button. A toggle tool functions as a toggle button. You can add push
tools and toggle tools to the standard toolbar or to a custom toolbar.

Syntaxes for the uitoolbar, uipushtool, and uitoggletool functions include the
following:

tbh = uitoolbar(fh,'PropertyName',PropertyValue,...)
pth = uipushtool(tnh,'PropertyName',PropertyValue,...)
tth = uitoggletool(tbh,'PropertyName',PropertyValue,...)

The output arguments, tbh, pth, and tth are the handles, respectively, of the resulting
toolbar, push tool, and toggle tool. See the uitoolbar, uipushtool, and
uitoggletool reference pages for other valid syntaxes.

Subsequent topics describe commonly used properties of toolbars and toolbar tools, offer
a simple example, and discuss use of the MATLAB standard toolbar:

Commonly Used Properties
The most commonly used properties needed to describe a toolbar and its tools are shown
in the following table.

 Create Toolbars for Programmatic Apps

9-51

Property Values Description
CData 3-D array of values

between 0.0 and 1.0
n-by-m-by-3 array of RGB values that
defines a truecolor image displayed
on either a push button or toggle
button.

HandleVisibility on, off. Default is on. Determines if an object's handle is
visible in its parent's list of children.
For toolbars and their tools, set
HandleVisibility to off to
protect them from operations not
intended for them.

Separator off, on. Default is off. Draws a dividing line to left of the
push tool or toggle tool

State off, on. Default is off. Toggle tool state. on is the down, or
depressed, position. off is the up,
or raised, position.

Tooltip Character vector or
string scalar

Text of the tooltip associated with
the push tool or toggle tool.

For a complete list of properties and for more information about the properties listed in
the table, see the Uitoolbar, Uipushtool, and Uitoggletool.

Toolbars
The following statements add a toolbar to a figure, and then add a push tool and a toggle
tool to the toolbar. By default, the tools are added to the toolbar, from left to right, in the
order they are created.

% Create the toolbar
fh = figure;
tbh = uitoolbar(fh);

% Add a push tool to the toolbar
a = [.20:.05:0.95];
img1(:,:,1) = repmat(a,16,1)';
img1(:,:,2) = repmat(a,16,1);
img1(:,:,3) = repmat(flip(a),16,1);
pth = uipushtool(tbh,'CData',img1,...
 'Tooltip','My push tool',...

9 Lay Out a Programmatic UI

9-52

 'HandleVisibility','off');
% Add a toggle tool to the toolbar
img2 = rand(16,16,3);
tth = uitoggletool(tbh,'CData',img2,'Separator','on',...
 'Tooltip','Your toggle tool',...
 'HandleVisibility','off');

fh is the handle of the parent figure.

th is the handle of the parent toolbar.

CData is a 16-by-16-by-3 array of values between 0 and 1. It defines the truecolor image
that is displayed on the tool. If your image is larger than 16 pixels in either dimension, it
may be clipped or cause other undesirable effects. If the array is clipped, only the center
16-by-16 part of the array is used.

Note See the ind2rgb reference page for information on converting a matrix X and
corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

 Create Toolbars for Programmatic Apps

9-53

Tooltip specifies the tooltips for the push tool and the toggle tool as My push tool
and Your toggle tool, respectively.

In this example, setting the toggle tool Separator property to on creates a dividing line
to the left of the toggle tool.

You can change the order of the tools by modifying the child vector of the parent toolbar.
For this example, execute the following code to reverse the order of the tools.

oldOrder = allchild(tbh);
newOrder = flipud(oldOrder);
tbh.Children = newOrder;

This code uses flipud because the Children property is a column vector.

Use the delete function to remove a tool from the toolbar. The following statement
removes the toggle tool from the toolbar. The toggle tool handle is tth.

delete(tth)

9 Lay Out a Programmatic UI

9-54

If necessary, you can use the findall function to determine the handles of the tools on a
particular toolbar.

Note After you have created a toolbar and its tools, set their HandleVisibility
properties off by executing statements similar to the following:

toolbarhandle.HandleVisibility = 'off';
toolhandles = toolbarhandle.Children;
toolhandles.HandleVisibility = 'off';

Display and Modify the Standard Toolbar
You can choose whether or not to display the MATLAB standard toolbar (highlighted in
red below). You can also add or delete tools from the standard toolbar.

 Create Toolbars for Programmatic Apps

9-55

Display the Standard Toolbar

Use the figure ToolBar property to display or hide the standard toolbar. Set ToolBar to
'figure' to display the standard toolbar. Set ToolBar to 'none' to hide it.

fh.ToolBar = 'figure'; % Display the standard toolbar
fh.ToolBar = 'none'; % Hide the standard toolbar

In these statements, fh is the handle of the figure.

The default ToolBar value is 'auto', which uses the MenuBar property value.

Modify the Standard Toolbar

Once you have the handle of the standard toolbar, you can add tools, delete tools, and
change the order of the tools.

Add a tool the same way you would add it to a custom toolbar. This code gets the handle
of the standard toolbar and adds a toggle tool to it.

tbh = findall(fh,'Type','uitoolbar');
tth = uitoggletool(tbh,'CData',rand(20,20,3),...
 'Separator','on',...
 'HandleVisibility','off');

To remove a tool from the standard toolbar, determine the handle of the tool to be
removed, and then use the delete function to remove it. The following code deletes the
toggle tool that was added to the standard toolbar above.

delete(tth)

If necessary, you can use the findall function to determine the handles of the tools on
the standard toolbar.

9 Lay Out a Programmatic UI

9-56

See Also
uipushtool | uitoggletool | uitoolbar

Related Examples
• “Create Menus for Programmatic Apps” on page 9-38

 See Also

9-57

DPI-Aware Behavior in MATLAB
In this section...
“Visual Appearance” on page 9-58
“Using Object Properties” on page 9-60
“Using print, getframe, and publish Functions” on page 9-61

Starting in R2015b, MATLAB is DPI-aware, which means that it takes advantage of your
full system resolution to draw graphical elements (fonts, UIs, and graphics). Graphical
elements appear sharp and consistent in size on these high-DPI systems:

• Windows systems in which the display dots-per-inch (DPI) value is set higher than 96
• Macintosh systems with Apple Retina displays

DPI-aware behavior does not apply to Linux systems.

Previously, MATLAB allowed some operating systems to scale graphical elements. That
scaling helped to maintain consistent appearance and functionality, but it also introduced
undesirable effects. Graphical elements often looked blurry, and the size of those
elements was sometimes inconsistent.

Visual Appearance
Here are the visual effects you might notice on high-DPI systems:

• The MATLAB desktop, graphics, fonts, and most UI components look sharp and render
with full graphical detail on Macintosh and Windows systems.

9 Lay Out a Programmatic UI

9-58

• When you create a graphics or UI object, and specify the Units as 'pixels', the size
of that object is now consistent with the size of other objects. For example, the size of
a push button (specified in pixels) is now consistent with the size of the text on that
push button (specified in points).

• Elements in the MATLAB Toolstrip look sharper than in previous releases. However,
icons in the Toolstrip might still look slightly blurry on some systems.

• On Windows systems, the MATLAB Toolstrip might appear larger than in previous
releases.

 DPI-Aware Behavior in MATLAB

9-59

• On Windows systems, the size of the Command Window fonts and Editor fonts might
be larger than in previous releases. In particular, you might see a difference if you
have nondefault font sizes selected in MATLAB preferences. You might need to adjust
those font sizes to make them look smaller.

• You might see differences on multiple-display systems that include a combination of
different displays (for example, some, but not all of the displays are high-DPI).
Graphical elements might look different across displays on those systems.

Using Object Properties
These changes to object properties minimize the impact on your existing code and allow
MATLAB to use the full display resolution when rendering graphical elements. All UIs you
create in MATLAB are automatically DPI-aware applications.

Units Property

When you set the Units property of a graphics or UI object to 'pixels', the size of each
pixel is now device-independent on Windows and Macintosh systems:

• On Windows systems, 1 pixel = 1/96 inch.
• On Macintosh systems, 1 pixel = 1/72 inch.
• On Linux systems, the size of a pixel is determined by the display DPI.

Your existing graphics and UI code will continue to function properly with the new pixel
size. Keep in mind that specifying (or querying) the size and location of an object in pixels
might not correspond to the actual pixels on your screen.

For example, each screen pixel on a 192-DPI Windows system is 1/192nd of an inch. In
this case, twice as many screen pixels cover the same linear distance as the device-
independent pixels do. If you create a figure, and specify its size to be 500-by-400 pixels,
MATLAB reports the size to be 500-by-400 in the Position property. However, the
display uses 1000-by-800 screen pixels to cover the same graphical region.

Note Starting in R2015b, MATLAB might report the size and location of objects as
fractional values (in pixel units) more frequently than in previous releases. For example,
your code might report fractional values in the Position property of a figure, whereas
previous releases reported whole numbers for that same figure.

9 Lay Out a Programmatic UI

9-60

Root ScreenSize Property

The ScreenSize property of the root object might not match the display size reported by
high-DPI Windows systems. Specifically, the values do not match when the Units
property of the root object is set to 'pixels'. MATLAB reports the value of the
ScreenSize property based on device-independent pixels, not the size of the actual
pixels on the screen.

Root ScreenPixelsPerInch Property

The ScreenPixelsPerInch property became a read-only property in R2015b. If you
want to change the size of text and other elements on the screen, adjust your operating
system settings.

Also, you cannot set or query the default value of the ScreenPixelsPerInch property.
These commands now return an error:

get(groot,'DefaultRootScreenPixelsPerInch')
set(groot,'DefaultRootScreenPixelsPerInch')

The factory value cannot be queried either. This command returns an error as well:

get(groot,'FactoryRootScreenPixelsPerInch')

Using print, getframe, and publish Functions
getframe and print Functions

When using the getframe function (or the print function with the -r0 option) on a
high-DPI system, the size of the image data array that MATLAB returns is larger than in
previous releases. Additionally, the number of elements in the array might not match the
figure size in pixel units. MATLAB reports the figure size based on device-independent
pixels. However, the size of the array is based on the display DPI.

publish Function

When publishing documents on a high-DPI system, the images saved to disk are larger
than in previous releases or on other systems.

 DPI-Aware Behavior in MATLAB

9-61

See Also
Figure | Root

9 Lay Out a Programmatic UI

9-62

Code a Programmatic App

• “Initialize a Programmatic App” on page 10-2
• “Write Callbacks for Apps Created Programmatically” on page 10-5

10

Initialize a Programmatic App
Some apps might perform these tasks when you launch them:

• Define default values
• Set UI component property values
• Process input arguments
• Hide the figure window until all the components are created

When you develop an app, consider grouping these tasks together in your code file. If an
initialization task involves several steps, consider creating a separate function for that
task.

Examples
Declare Variables for Input and Output Arguments

These are typical declarations for input and output arguments.

mInputArgs = varargin; % Command line arguments

mOutputArgs = {}; % Variable for storing output

See the varargin reference page for more information.

Define Custom Property/Value Pairs

This example defines the properties in a cell array, mPropertyDefs, and then initializes
the properties.
mPropertyDefs = {...
 'iconwidth', @localValidateInput, 'mIconWidth';
 'iconheight', @localValidateInput, 'mIconHeight';
 'iconfile', @localValidateInput, 'mIconFile'};
mIconWidth = 16; % Use input property 'iconwidth' to initialize
mIconHeight = 16; % Use input property 'iconheight' to initialize
mIconFile = fullfile(matlabroot,'toolbox/matlab/icons/');
 % Use input property 'iconfile' to initialize

Each row of the cell array defines one property. It specifies, in order, the name of the
property, the routine that is called to validate the input, and the name of the variable that
holds the property value.

10 Code a Programmatic App

10-2

The fullfile function builds a full filename from parts.

The following statements start the Icon Editor application. The first statement creates a
new icon. The second statement opens existing icon file for editing.

cdata = iconEditor('iconwidth',16,'iconheight',25)
cdata = iconEditor('iconfile','eraser.gif');

iconEditor calls a routine, processUserInputs, during the initialization to
accomplish these tasks:

• Identify each property by matching it to the first column of the cell array
• Call the routine named in the second column to validate the input
• Assign the value to the variable named in the third column

Make the Figure Invisible

When you create the figure window, make it invisible when you create it. Display it only
after you have added all the UI components.

To make the window invisible, set the figure Visible property to 'off' when you create
the figure:

hMainFigure = figure(...
 'Units','characters',...
 'MenuBar','none',...
 'Toolbar','none',...
 'Position',[71.8 34.7 106 36.15],...
 'Visible','off');

After you have added all the components to the figure window, make the figure visible:

hMainFigure.Visible = 'on';

Most components have a Visible property. Thus, you can also use this property to make
individual components invisible.

Return Output to the User

If your program allows an output argument, and the user specifies such an argument,
then you want to return the expected output. The code that provides this output usually
appears just before the program’s main function returns.

In the example shown here,

 Initialize a Programmatic App

10-3

1 A call to uiwait blocks execution until uiresume is called or the current figure is
deleted.

2 While execution is blocked, the user creates the icon.
3 When the user clicks OK, that push button’s callback calls the uiresume function.
4 The program returns the completed icon to the user as output.

% Make the window blocking.
uiwait(hMainFigure);

% Return the edited icon CData if it is requested.
mOutputArgs{1} = mIconCData;
if nargout>0
 [varargout{1:nargout}] = mOutputArgs{:};
end

mIconData contains the icon that the user created or edited. mOutputArgs is a cell
array defined to hold the output arguments. nargout indicates how many output
arguments the user has supplied. varargout contains the optional output arguments
returned by the program. See the complete Icon Editor code file for more information.

See Also

Related Examples
• “Create a Simple App Programmatically” on page 3-2

10 Code a Programmatic App

10-4

Write Callbacks for Apps Created Programmatically

In this section...
“Callbacks for Different User Actions” on page 10-5
“How to Specify Callback Property Values” on page 10-7

Callbacks for Different User Actions
UI and graphics components have certain properties that you can associate with specific
callback functions. Each of these properties corresponds to a specific user action. For
example, a uicontrol has a property called Callback. You can set the value of this
property to be a handle to a callback function, an anonymous function, or a character
vector containing a MATLAB expression. Setting this property makes your app respond
when the user interacts with the uicontrol. If the Callback property has no specified
value, then nothing happens when the user interacts with the uicontrol.

This table lists the callback properties that are available, the user actions that trigger the
callback function, and the most common UI and graphics components that use them.

Callback
Property

User Action Components That Use This
Property

ButtonDownFcn End user presses a mouse button
while the pointer is on the
component or figure.

axes, figure, uibuttongroup,
uicontrol, uipanel, uitable,

Callback End user triggers the component.
For example: selecting a menu
item, moving a slider, or pressing a
push button.

uicontextmenu, uicontrol,
uimenu

CellEditCallb
ack

End user edits a value in a table
whose cells are editable.

uitable

CellSelection
Callback

End user selects cells in a table. uitable

ClickedCallba
ck

End user clicks the push tool or
toggle tool with the left mouse
button.

uitoggletool, uipushtool

 Write Callbacks for Apps Created Programmatically

10-5

Callback
Property

User Action Components That Use This
Property

CloseRequestF
cn

The figure closes. figure

CreateFcn Callback executes when MATLAB
creates the object, but before it is
displayed.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool,
uitoolbar

DeleteFcn Callback executes just before
MATLAB deletes the figure.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool,
uitoolbar

KeyPressFcn End user presses a keyboard key
while the pointer is on the object.

figure, uicontrol, uipanel,
uipushtool, uitable,
uitoolbar

KeyReleaseFcn End user releases a keyboard key
while the pointer is on the object.

figure, uicontrol, uitable

OffCallback Executes when the State of a
toggle tool changes to 'off'.

uitoggletool

OnCallback Executes when the State of a
toggle tool changes to 'on'.

uitoggletool

SizeChangedFc
n

End user resizes a button group,
figure, or panel whose Resize
property is 'on'.

figure, uipanel,
uibuttongroup

SelectionChan
gedFcn

End user selects a different radio
button or toggle button within a
button group.

uibuttongroup

WindowButtonD
ownFcn

End user presses a mouse button
while the pointer is in the figure
window.

figure

WindowButtonM
otionFcn

End user moves the pointer within
the figure window.

figure

10 Code a Programmatic App

10-6

Callback
Property

User Action Components That Use This
Property

WindowButtonU
pFcn

End user releases a mouse button. figure

WindowKeyPres
sFcn

End user presses a key while the
pointer is on the figure or any of
its child objects.

figure

WindowKeyRele
aseFcn

End user releases a key while the
pointer is on the figure or any of
its child objects.

figure

WindowScrollW
heelFcn

End user turns the mouse wheel
while the pointer is on the figure.

figure

How to Specify Callback Property Values
To associate a callback function with a UI component, set the value of one of the
component’s callback properties to be a reference to the callback function. Typically, you
do this when you define the component, but you can change callback property values
anywhere in your code.

Specify the callback property value in one of the following ways:

• “Specify a Function Handle” on page 10-7.
• “Specify a Cell Array” on page 10-8. This cell array contains a function handle as

the first element, followed by and any input arguments you want to use in the function.
• “Specify an Anonymous Function” on page 10-9.
• “Specify a Character Vector Containing MATLAB Commands (Not Recommended)” on

page 10-9

Specify a Function Handle

Function handles provide a way to represent a function as a variable. The function must
be a local or nested function in the same file as the app code, or you can write it in a
separate file that is on the MATLAB path.

To create the function handle, specify the @ operator before the name of the function. For
example, this uicontrol command specifies the Callback property to be a handle to
the function pushbutton_callback:

 Write Callbacks for Apps Created Programmatically

10-7

b = uicontrol('Style','pushbutton','Callback',@pushbutton_callback);

Here is the function definition for pushbutton_callback:

function pushbutton_callback(src,event)
 display('Button pressed');
end

Notice that the function handle does not explicitly refer to any input arguments, but the
function declaration includes two input arguments. These two input arguments are
required for all callbacks you specify as a function handle. MATLAB passes these
arguments automatically when the callback executes. The first argument is the UI
component that triggered the callback. The second argument provides event data to the
callback function. If there is no event data available to the callback function, then
MATLAB passes the second input argument as an empty array. The following table lists
the callbacks and components that use event data.

Callback Property Name Component
WindowKeyPressFcn
WindowKeyReleaseFcn
WindowScrollWheel

figure

KeyPressFcn figure, uicontrol, uitable
KeyReleaseFcn figure, uicontrol, uitable
SelectionChangedFcn uibuttongroup
CellEditCallback
CellSelectionCallback

uitable

A benefit of specifying callbacks as function handles is that MATLAB checks the function
for syntax errors and missing dependencies when you assign the callback to the
component. If there is a problem in the callback function, then MATLAB returns an error
immediately instead of waiting for the user to trigger the callback. This behavior helps
you to find problems in your code before the user encounters them.

Specify a Cell Array

Use a cell array to specify a callback function that accepts additional input arguments
that you want to use in the function. The first element in the cell array is a function
handle. The other elements in the cell array are the additional input arguments you want
to use, separated by commas. The function you specify must define the same two input

10 Code a Programmatic App

10-8

arguments as described in “Specify a Function Handle” on page 10-7. However, you can
define additional inputs in your function declaration after the first two arguments.

This uicontrol command creates a push button and specifies the Callback property to
be a cell array. In this case, the name of the function is pushbutton_callback, and the
value of the additional input argument is 5.

b = uicontrol('Style','pushbutton','Callback',{@pushbutton_callback,5});

Here is the function definition for pushbutton_callback:

function pushbutton_callback(src,event,x)
 display(x);
end

Like callbacks specified as function handles, MATLAB checks callbacks specified as cell
arrays for syntax errors and missing dependencies when you assign the callback to the
component. If there is a problem in the callback function, then MATLAB returns an error
immediately instead of waiting for the user to trigger the callback. This behavior helps
you to find problems in your code before the user encounters them.

Specify an Anonymous Function

Specify an anonymous function when you want a UI component to execute a function that
does not support the two arguments that are required for function handles and cell
arrays. For example, this uicontrol command creates a push button and specifies the
Callback property to be an anonymous function. In this case, the name of function is
myfun, and its function declaration defines only one input argument, x.

b = uicontrol('Style','pushbutton','Callback',@(src,event)myfun(x));

Specify a Character Vector Containing MATLAB Commands (Not Recommended)

You can specify a character vector when you want to execute a few simple commands, but
the callback can become difficult to manage if it contains more than a few commands. The
character vector you specify must consist of valid MATLAB expressions, which can
include arguments to functions. For example:

hb = uicontrol('Style','pushbutton',...
 'String','Plot line',...
 'Callback','plot(rand(20,3))');

 Write Callbacks for Apps Created Programmatically

10-9

The character vector, 'plot(rand(20,3))', is a valid command, and MATLAB
evaluates it when the user clicks the button. If the character vector includes a variable,
for example,

'plot(x)'

The variable x must exist in the base workspace when the user triggers the callback, or it
returns an error. The variable does not need to exist at the time you assign callback
property value, but it must exist when the user triggers the callback.

Unlike callbacks that are specified as function handles or cell arrays, MATLAB does not
check character vectors for syntax errors or missing dependencies. If there is a problem
with the MATLAB expression, it remains undetected until the user triggers the callback.

See Also

Related Examples
• “Callbacks for Specific Components” on page 7-12
• “Share Data Among Callbacks” on page 11-2
• “Interrupt Callback Execution” on page 12-2
• “Anonymous Functions”

10 Code a Programmatic App

10-10

Manage Application-Defined Data

11

Share Data Among Callbacks
In this section...
“Overview of Data Sharing Techniques” on page 11-2
“Store Data in UserData or Other Object Properties” on page 11-3
“Store Data as Application Data” on page 11-8
“Create Nested Callback Functions (Programmatic Apps)” on page 11-12
“Store Data Using the guidata Function” on page 11-13
“GUIDE Example: Share Slider Data Using guidata” on page 11-16
“GUIDE Example: Share Data Between Two Apps” on page 11-16
“GUIDE Example: Share Data Among Three Apps” on page 11-17

Overview of Data Sharing Techniques
Many apps contain interdependent controls, menus, and graphics objects. Since each
callback function has its own scope, you must explicitly share data with those parts of
your app that need to access it. The table below describes several different methods for
sharing data within your app.

Method Description Requirements and Trade-Offs
“Store Data in
UserData or
Other Object
Properties” on
page 11-3

Get or set property values directly
through the component object.

All UI components have a
UserData property that can store
any MATLAB data.

• Requires access to the
component to set or retrieve
the properties.

• UserData holds only one
variable at a time, but you can
store multiple values as a
struct array or cell array.

“Store Data as
Application
Data” on page
11-8

Associate data with a specific
component using the setappdata
function. You can access it later
using the getappdata function.

• Requires access to the
component to set or retrieve
the application data.

• Can share multiple variables.

11 Manage Application-Defined Data

11-2

Method Description Requirements and Trade-Offs
“Create Nested
Callback
Functions
(Programmatic
Apps)” on page
11-12

Nest your callback functions inside
your main function. This gives
your callback functions access to
all the variables in the main
function.

• Requires callback functions to
be coded in the same file as the
main function.

• Not recommended for GUIDE
apps.

• Can share multiple variables.
“Store Data
Using the
guidata
Function” on
page 11-13

Share data with the figure window
using the guidata function.

• Stores or retrieves the data
through any UI component.

• Stores only one variable at a
time, but you can store multiple
values as a struct array or
cell array.

Store Data in UserData or Other Object Properties
UI components contain useful information in their properties. For example, you can find
the current position of a slider by querying its Value property. In addition, all
components have a UserData property, which can store any MATLAB variable. All
callback functions can access the value stored in the UserData property as long as those
functions can access the component.

Share UserData in Apps Created Programmatically

Use dot notation, component.propertyname, to get or set property values
programmatically. Dot notation works in R2014b and later releases. This code gets and
sets the name of a figure.

hfig = figure;
figname = hfig.Name;
hfig.Name = 'My Window';

If you are using an earlier release, use the get and set functions instead:

hfig = figure;
figname = get(hfig,'Name');
set(hfig,'Name','My Window');

 Share Data Among Callbacks

11-3

If your code does not have direct access to a component, use the findobj function to
search for that component. If the search is successful, findobj returns the component as
output. Then you can access the component’s properties.

The following app code uses the UserData property to share information about the slider.
To see how it works, copy and paste this code into an editor and run it.

function my_slider()
hfig = figure();
slider = uicontrol('Parent', hfig,'Style','slider',...
 'Units','normalized',...
 'Position',[0.3 0.5 0.4 0.1],...
 'Tag','slider1',...
 'UserData',struct('val',0,'diffMax',1),...
 'Callback',@slider_callback);

button = uicontrol('Parent', hfig,'Style','pushbutton',...
 'Units','normalized',...
 'Position',[0.4 0.3 0.2 0.1],...
 'String','Display Difference',...
 'Callback',@button_callback);
end

function slider_callback(hObject,eventdata)
 sval = hObject.Value;
 diffMax = hObject.Max - sval;
 data = struct('val',sval,'diffMax',diffMax);
 hObject.UserData = data;
 % For R2014a and earlier:
 % sval = get(hObject,'Value');
 % maxval = get(hObject,'Max');
 % diffMax = maxval - sval;
 % data = struct('val',sval,'diffMax',diffMax);
 % set(hObject,'UserData',data);

end

function button_callback(hObject,eventdata)
 h = findobj('Tag','slider1');
 data = h.UserData;
 % For R2014a and earlier:
 % data = get(h,'UserData');
 display([data.val data.diffMax]);
end

11 Manage Application-Defined Data

11-4

When the user moves the slider, the slider_callback uses these commands to store
data in a structure:

• data = struct('val',sval,'diffMax',diffMax) stores the values, sval and
diffMax, in a structure called data.

• hObject.UserData = data stores the value of data in the UserData property of
the slider.

When the user clicks the push button, the button_callback uses these commands to
retrieve the data:

• h = findobj('Tag','slider1') finds the slider component.
• data = h.UserData gets the value of the slider’s UserData property.

Share UserData in GUIDE Apps

To set up a GUIDE app for sharing slider data with the UserData property, perform these
steps:

1 In the Command Window, type guide.
2 In the GUIDE Quick Start dialog box, select Blank GUI (Default). Then, click OK.
3 Display the names of the UI components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.
c Click OK.

4 Select the push button tool from the component palette at the left side of the Layout
Editor and drag it into the layout area.

5 Select the slider tool from the component palette at the left side of the Layout Editor
and drag it into the layout area.

6 Select File > Save. Save the UI as myslider.fig. MATLAB opens the code file in
the Editor.

7 Set the initial value of the UserData property in the opening function,
myslider_OpeningFcn. This function executes just before the UI is visible to users.

In myslider_OpeningFcn, insert these commands immediately after the command,
handles.output = hObject.

 Share Data Among Callbacks

11-5

data = struct('val',0,'diffMax',1);
set(handles.slider1,'UserData',data);

After you add the commands, myslider_OpeningFcn looks like this.

function myslider_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to junk (see VARARGIN)

% Choose default command line output for myslider
handles.output = hObject;
data = struct('val',0,'diffMax',1);
set(handles.slider1,'UserData',data);

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes myslider wait for user response
% uiwait(handles.figure1);

Notice that handles is an input argument to myslider_OpeningFcn. The handles
variable is a structure that contains all the components in the UI. Each field in this
structure corresponds to a separate component. Each field name matches the Tag
property of the corresponding component. Thus, handles.slider1 is the slider
component in this UI. The command, set(handles.slider1,'UserData',data)
stores the variable, data, in the UserData property of the slider.

8 Add code to the slider callback for modifying the data. Add these commands to the
end of the function, slider1_Callback.

maxval = get(hObject,'Max');
sval = get(hObject,'Value');
diffMax = maxval - sval;
data = get(hObject,'UserData');
data.val = sval;
data.diffMax = diffMax;
% Store data in UserData of slider
set(hObject,'UserData',data);

After you add the commands, slider1_Callback looks like this.

% --- Executes on slider movement.
function slider1_Callback(hObject, eventdata, handles)

11 Manage Application-Defined Data

11-6

% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
maxval = get(hObject,'Max');
sval = get(hObject,'Value');
diffMax = maxval - sval;
data = get(hObject,'UserData');
data.val = sval;
data.diffMax = diffMax;
% Store data in UserData of slider
set(hObject,'UserData',data);

Notice that hObject is an input argument to the slider1_Callback function.
hObject is always the component that triggers the callback (the slider, in this case).
Thus, set(hObject,'UserData',data), stores the data variable in the
UserData property of the slider.

9 Add code to the push button callback for retrieving the data. Add these commands to
the end of the function, pushbutton1_Callback.

% Get UserData from the slider
data = get(handles.slider1,'UserData');
currentval = data.val;
diffval = data.diffMax;
display([currentval diffval]);

After you add the commands, pushbutton1_Callback looks like this.

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get UserData from the slider
data = get(handles.slider1,'UserData');
currentval = data.val;
diffval = data.diffMax;
display([currentval diffval]);

 Share Data Among Callbacks

11-7

This code uses the handles structure to access the slider. The command, data =
get(handles.slider1,'UserData'), gets the slider’s UserData property. Then,
the display function displays the stored values.

10 Save your code by pressing Save in the Editor Toolstrip.

Store Data as Application Data
To store application data, call the setappdata function:

setappdata(obj,name,value);

The first input, obj, is the component object in which to store the data. The second input,
name, is a friendly name that describes the value. The third input, value, is the value you
want to store.

To retrieve application data, use the getappdata function:

data = getappdata(obj,name);

The component, obj, must be the component object containing the data. The second
input, name, must match the name you used to store the data. Unlike the UserData
property, which only holds only one variable, you can use setappdata to store multiple
variables.

Share Application Data in Apps Created Programmatically

This app uses application data to share two values. To see how it works, copy and paste
this code into an editor and run it.

function my_slider()
hfig = figure();
setappdata(hfig,'slidervalue',0);
setappdata(hfig,'difference',1);

slider = uicontrol('Parent', hfig,'Style','slider',...
 'Units','normalized',...
 'Position',[0.3 0.5 0.4 0.1],...
 'Tag','slider1',...
 'Callback',@slider_callback);

button = uicontrol('Parent', hfig,'Style','pushbutton',...
 'Units','normalized',...
 'Position',[0.4 0.3 0.2 0.1],...

11 Manage Application-Defined Data

11-8

 'String','Display Values',...
 'Callback',@button_callback);
end

function slider_callback(hObject,eventdata)
 diffMax = hObject.Max - hObject.Value;
 setappdata(hObject.Parent,'slidervalue',hObject.Value);
 setappdata(hObject.Parent,'difference',diffMax);
 % For R2014a and earlier:
 % maxval = get(hObject,'Max');
 % currval = get(hObject,'Value');
 % diffMax = maxval - currval;
 % parentfig = get(hObject,'Parent');
 % setappdata(parentfig,'slidervalue',currval);
 % setappdata(parentfig,'difference',diffMax);
end

function button_callback(hObject,eventdata)
 currentval = getappdata(hObject.Parent,'slidervalue');
 diffval = getappdata(hObject.Parent,'difference');
 % For R2014a and earlier:
 % parentfig = get(hObject,'Parent');
 % currentval = getappdata(parentfig,'slidervalue');
 % diffval = getappdata(parentfig,'difference');

 display([currentval diffval]);
end

When the user moves the slider, the slider_callback function calculates diffMax.
Then, it uses these commands to modify the application data:

• setappdata(hObject.Parent,'slidervalue',hObject.Value) stores the
current slider value in the figure using the name, 'slidervalue'. In this case,
hObject.Parent is the figure.

• setappdata(parentfig,'difference',diffMax) stores diffMax in the figure
using the name, 'difference'.

When the user clicks the push button, the button_callback function retrieves the data
using these commands:

• currentval = getappdata(hObject.Parent,'slidervalue') retrieves the
current slider value from the figure. In this case, hObject.Parent is the figure.

 Share Data Among Callbacks

11-9

• diffval = getappdata(hObject.Parent,'difference') retrieve the
difference value from the figure.

Share Application Data in GUIDE Apps

To set up a GUIDE app for sharing application data, perform these steps:

1 In the Command Window, type guide.
2 In the GUIDE Quick Start dialog box, select Blank GUI (Default). Then, click OK.
3 Display the names of the UI components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.
c Click OK.

4 Select the push button tool from the component palette at the left side of the Layout
Editor and drag it into the layout area.

5 Select the slider tool from the component palette at the left side of the Layout Editor
and drag it into the layout area.

6 Select File > Save. Save the UI as myslider.fig. MATLAB opens the code file in
the Editor.

7 Set the initial value of the application data in the opening function,
myslider_OpeningFcn. This function executes just before the UI is visible to users.
In myslider_OpeningFcn, insert these commands immediately after the command,
handles.output = hObject.

setappdata(handles.figure1,'slidervalue',0);
setappdata(handles.figure1,'difference',1);

After you add the commands, myslider_OpeningFcn looks like this.

function myslider_OpeningFcn(hObject,eventdata,handles,varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to junk (see VARARGIN)

% Choose default command line output for junk
handles.output = hObject;
setappdata(handles.figure1,'slidervalue',0);

11 Manage Application-Defined Data

11-10

setappdata(handles.figure1,'difference',1);

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes junk wait for user response (see UIRESUME)
% uiwait(handles.figure1);

Notice that handles is an input argument to myslider_OpeningFcn. The handles
variable is a structure that contains all the components in the UI. Each field in this
structure corresponds to a separate component. Each field name matches the Tag
property of the corresponding component. In this case, handles.figure1 is the
figure object. Thus, setappdata can use this figure object to store the data.

8 Add code to the slider callback for changing the data. Add these commands to the
end of the function, slider1_Callback.

maxval = get(hObject,'Max');
currval = get(hObject,'Value');
diffMax = maxval - currval;
% Store application data
setappdata(handles.figure1,'slidervalue',currval);
setappdata(handles.figure1,'difference',diffMax);

After you add the commands, slider1_Callback looks like this.

function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
maxval = get(hObject,'Max');
currval = get(hObject,'Value');
diffMax = maxval - currval;
% Store application data
setappdata(handles.figure1,'slidervalue',currval);
setappdata(handles.figure1,'difference',diffMax);

This callback function has access to the handles structure, so the setappdata
commands store the data in handles.figure1.

9 Add code to the push button callback for retrieving the data. Add these commands to
the end of the function, pushbutton1_Callback.

 Share Data Among Callbacks

11-11

% Retrieve application data
currentval = getappdata(handles.figure1,'slidervalue');
diffval = getappdata(handles.figure1,'difference');
display([currentval diffval]);

After you add the commands, pushbutton1_Callback looks like this.

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Retrieve application data
currentval = getappdata(handles.figure1,'slidervalue');
diffval = getappdata(handles.figure1,'difference');
display([currentval diffval]);

This callback function has access to the handles structure, so the getappdata
commands retrieve the data from handles.figure1.

10 Save your code by pressing Save in the Editor Toolstrip.

Create Nested Callback Functions (Programmatic Apps)
You can nest callback functions inside the main function of a programmatic app. When
you do this, the nested callback functions share a workspace with the main function. As a
result, the nested functions have access to all the UI components and variables defined in
the main function. The following example code uses nested functions to share data about
the slider position. To see how it works, copy and paste this code into an editor and run it.

function my_slider()
 hfig = figure();
 data = struct('val',0,'diffMax',1);
 slider = uicontrol('Parent', hfig,'Style','slider',...
 'Units','normalized',...
 'Position',[0.3 0.5 0.4 0.1],...
 'Tag','slider1',...
 'Callback',@slider_callback);

 button = uicontrol('Parent', hfig,'Style','pushbutton',...
 'Units','normalized',...
 'Position',[0.4 0.3 0.2 0.1],...
 'String','Display Difference',...

11 Manage Application-Defined Data

11-12

 'Callback',@button_callback);

 function slider_callback(hObject,eventdata)
 sval = hObject.Value;
 diffMax = hObject.Max - sval;
 % For R2014a and earlier:
 % sval = get(hObject,'Value');
 % maxval = get(hObject,'Max');
 % diffMax = maxval - sval;

 data.val = sval;
 data.diffMax = diffMax;
 end

 function button_callback(hObject,eventdata)
 display([data.val data.diffMax]);
 end
end

The main function defines a struct array called data. When the user moves the slider,
the slider_callback function updates the val and diffMax fields of the data
structure. When the end user clicks the push button, the button_callback function
displays the values stored in data.

Note Nested functions are not recommended for GUIDE apps.

Store Data Using the guidata Function
The guidata function provides a way to share data with the figure window. You can store
or retrieve your data in any callback through the hObject component. This means that,
unlike working with UserData or application data, you do not need access to one specific
component to set or get the data. Call guidata with two input arguments to store data:

guidata(object_handle,data);

The first input, object_handle, is any UI component (typically hObject). The second
input, data, is the variable to store. Every time you call guidata using two input
arguments, MATLAB overwrites any previously stored data. This means you can only
store one variable at a time. If you want to share multiple values, then store the data as a
struct array or cell array.

To retrieve data, call guidata using one input argument and one output argument:

 Share Data Among Callbacks

11-13

data = guidata(object_handle);

The component you specify to store the data does not need to be the same component
that you use to retrieve it.

If your data is stored as a struct array or cell array, and you want to update one element
without changing the other elements, then retrieve the data and replace it with the
modified array:

data = guidata(hObject);
data.myvalue = 2;
guidata(hObject,data);

Use guidata in Apps Created Programmatically

To use guidata in a programmatic app, store the data with some initial values in the
main function. Then you can retrieve and modify the data in any callback function.

The following code is a simple example of a programmatic app that uses guidata to
share a structure containing two fields. To see how it works, copy and paste this code into
an editor and run it.

function my_slider()
hfig = figure();
guidata(hfig,struct('val',0,'diffMax',1));
slider = uicontrol('Parent', hfig,'Style','slider',...
 'Units','normalized',...
 'Position',[0.3 0.5 0.4 0.1],...
 'Tag','slider1',...
 'Callback',@slider_callback);

button = uicontrol('Parent', hfig,'Style','pushbutton',...
 'Units','normalized',...
 'Position',[0.4 0.3 0.2 0.1],...
 'String','Display Values',...
 'Callback',@button_callback);
end

function slider_callback(hObject,eventdata)
 data = guidata(hObject);
 data.val = hObject.Value;
 data.diffMax = hObject.Max - data.val;
 % For R2014a and earlier:
 % data.val = get(hObject,'Value');

11 Manage Application-Defined Data

11-14

 % maxval = get(hObject,'Max');
 % data.diffMax = maxval - data.val;

 guidata(hObject,data);
end

function button_callback(hObject,eventdata)
 data = guidata(hObject);
 display([data.val data.diffMax]);
end

When the user moves the slider, the slider_callback function executes these
commands to retrieve and modify the stored data:

• data = guidata(hObject) retrieves the stored data as a structure.
• data.diffMax = maxval - data.val modifies the diffMax field in the structure.
• guidata(hObject,data) stores the modified structure.

When the user clicks the push button, the button_callback function calls guidata to
retrieve a copy of the stored structure. Then it displays the two values stored in the
structure.

Use guidata in GUIDE Apps

GUIDE uses the guidata function to store a structure called handles, which contains all
the UI components. MATLAB passes the handles array to every callback function. If you
want to use guidata to share additional data, then add fields to the handles structure
in the opening function. The opening function is a function defined near the top of your
code file that has _OpeningFcn in the name.

To modify your data in a callback function, modify the handles structure, and then store
it using the guidata function. This slider callback function shows how to modify and
store the handles structure in a GUIDE callback function.

function slider1_Callback(hObject, eventdata,handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range
 handles.myvalue = 2;

 Share Data Among Callbacks

11-15

 guidata(hObject,handles);
end

GUIDE Example: Share Slider Data Using guidata
Here is a prebuilt GUIDE app that uses the guidata function to share data between a
slider and a text field. When you move the slider, the number displayed in the text field
changes to show the new slider position.

GUIDE Example: Share Data Between Two Apps
Here is a prebuilt GUIDE app that uses application data and the guidata function to
share data between two dialog boxes. When you enter text in the second dialog box and
click OK, the button label changes in the first dialog box.

11 Manage Application-Defined Data

11-16

In changeme_main.m, the buttonChangeMe_Callback function executes this
command to display the second dialog box:

changeme_dialog('changeme_main', handles.figure)

The handles.figure input argument is the Figure object for the changeme_main
dialog box.

The changeme_dialog function retrieves the handles structure from the Figure
object. Thus, the entire set of components in the changeme_main dialog box is available
to the second dialog box.

GUIDE Example: Share Data Among Three Apps
Here is a prebuilt GUIDE app that uses guidata and UserData to share data among
three app windows. The large window is an icon editor that accepts information from the
tool palette and color palette windows.

 Share Data Among Callbacks

11-17

In guide_inconeditor.m, the function guide_iconeditor_OpeningFcn contains
this command:

colorPalette = guide_colorpalette('iconEditor', hObject)

The arguments are:

• 'iconEditor' specifies that a callback in the guide_iconEditor window triggered
the execution of the function.

• hObject is the Figure object for the guide_iconEditor window.

11 Manage Application-Defined Data

11-18

• colorPalette is the Figure object for the guide_colorPalette window.

Similarly, guide_iconeditor_OpeningFcn calls the guide_toolpalette function
with similar input and output arguments.

Passing the Figure object between these functions allows the guide_iconEditor window
to access the handles structure of the other two windows. Likewise, the other two
windows can access the handles structure for the guide_iconEditor window.

See Also

Related Examples
• “Nested Functions”
• “Interrupt Callback Execution” on page 12-2
• “Write Callbacks in GUIDE” on page 7-2
• “Write Callbacks for Apps Created Programmatically” on page 10-5

 See Also

11-19

Manage Callback Execution

12

Interrupt Callback Execution
In this section...
“How to Control Interruption” on page 12-2
“Callback Behavior When Interruption is Allowed” on page 12-2
“Example” on page 12-3

MATLAB lets you control whether or not a callback function can be interrupted while it is
executing. For instance, you can allow users to stop an animation loop by creating a
callback that interrupts the animation. At other times, you might want to prevent
potential interruptions, when the order of the running callback is important. For instance,
you might prevent interruptions for a WindowButtonMotionFcn callback that shows
different sections of an image.

How to Control Interruption
Callback functions execute according to their order in a queue. If a callback is executing
and a user action triggers a second callback, the second callback attempts to interrupt
the first callback. The first callback is the running callback. The second callback is the
interrupting callback.

Two property values control the response to an interruption attempt:

• The Interruptible property of the object owning the running callback determines if
interruption is allowed. A value of 'on' allows the interruption. A value of 'off' does
not allow the interruption. The default value is 'on'.

• If interruption is not allowed, then the BusyAction property (of the object owning the
interrupting callback) determines if MATLAB enqueues or discards the interrupting
callback. A value of 'queue' allows the interrupting callback to execute after the
running callback finishes execution. A value of 'cancel' discards the interrupting
callback. The default value is 'queue'.

Callback Behavior When Interruption is Allowed
When an object’s Interruptible property is set to 'on', its callback can be interrupted
at the next occurrence of one of these commands: drawnow, figure, getframe,
waitfor, pause, or waitbar.

12 Manage Callback Execution

12-2

• If the running callback contains one of these commands, then MATLAB stops the
execution of the running callback and executes the interrupting callback. MATLAB
resumes executing the running callback when the interrupting callback completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

For more details about the interruptible property and its effects, see the Interruptible
property description on the Uicontrol page.

Example
This example shows how to control callback interruption using the Interruptible and
BusyAction properties and a wait bar.

Copy the Source File

1 In MATLAB, set your current folder to one in which you have write access.
2 Execute this MATLAB command:

copyfile(fullfile(docroot,
'techdoc','creating_guis','examples',...
'callback_interrupt.m')),fileattrib('callback_interrupt.m',
'+w');

Run the Example Code

Execute the command, callback_interrupt. The program displays two windows.

 Interrupt Callback Execution

12-3

Clicking specific pairs of buttons demonstrates the effect of different property value
combinations :

12 Manage Callback Execution

12-4

• Callback interruption — Click Wait (interruptible) immediately followed by either
button in the second window: Surf Plot (queue) or Mesh Plot (cancel). The wait
bar displays, but is momentarily interrupted by the plotting operation.

• Callback queueing — Click Wait (uninterruptible) immediately followed by Surf
Plot (queue). The wait bar runs to completion. Then the surface plot displays.

• Callback cancellation — Click Wait (uninterruptible) immediately followed by Mesh
Plot (cancel). The wait bar runs to completion. No plot displays because MATLAB
discards the mesh plot callback.

Examine the Source Code

The Interruptible and BusyAction properties are passed as input arguments to the
uicontrol function when each button is created.

Here is the command that creates the Wait (interruptible) push button. Notice that the
Interruptible property is set to 'on'.

h_interrupt = uicontrol(h_panel1,'Style','pushbutton',...
 'Position',[30,110,120,30],...
 'String','Wait (interruptible)',...
 'Tooltip','Interruptible = on',...
 'Interruptible','on',...
 'Callback',@wait_interruptible);

Here is the command that creates the Wait (uninterruptible) push button. Notice that
the Interruptible property is set to 'off'.

h_nointerrupt = uicontrol(h_panel1,'Style','pushbutton',...
 'Position',[30,40,120,30],...
 'String','Wait (uninterruptible)',...
 'Tooltip','Interruptible = off',...
 'Interruptible','off',...
 'Callback',@wait_uninterruptible);

Here is the command that creates the Surf Plot (queue) push button. Notice that the
BusyAction property is set to 'queue'.

hsurf_queue = uicontrol(h_panel2,'Style','pushbutton',...
 'Position',[30,200,110,30],...
 'String','Surf Plot (queue)',...
 'BusyAction','queue',...
 'Tooltip','BusyAction = queue',...
 'Callback',@surf_queue);

 Interrupt Callback Execution

12-5

Here is the command that creates the Mesh Plot (cancel) push button. Notice that the
BusyAction property is set to 'cancel'.

hmesh_cancel = uicontrol(h_panel2,'Style','pushbutton',...
 'Position',[30,130,110,30],...
 'String','Mesh Plot (cancel)',...
 'BusyAction','cancel',...
 'Tooltip','BusyAction = cancel',...
 'Callback',@mesh_cancel);

See Also
drawnow | timer | uiwait | waitfor

Related Examples
• “Write Callbacks for Apps Created Programmatically” on page 10-5
• “Automatically Refresh Plot in a GUIDE App” on page 8-23
• “Schedule Command Execution Using Timer”
• “Finding Code Bottlenecks”

12 Manage Callback Execution

12-6

Examples of Programmatic Apps

13

Programmatic App that Displays a Table
This example shows how to create a table in an app using the uitable function. It also
shows how to modify the appearance of the table and how to restrict editing of the table
in the running app.

Create a Table Containing Simple Numeric Data

The uitable function creates an empty table. You can populate the table by setting the
Data property. For example, you can create a table containing magic square values.

f = figure('Position', [100 100 752 250]);
t = uitable('Parent', f, 'Position', [25 50 700 200], 'Data', magic(10))

t =
 Table with properties:

 Data: [10x10 double]
 ColumnWidth: 'auto'
 ColumnEditable: []
 CellEditCallback: ''
 Position: [25 50 700 200]
 Units: 'pixels'

 Show all properties

13 Examples of Programmatic Apps

13-2

Create a Table Containing Mixed Data Types

Display mixed data types by setting the Data property to a cell array.

load patients LastName Age Weight Height SelfAssessedHealthStatus % load data
PatientData = [LastName num2cell([Age Weight Height]) SelfAssessedHealthStatus]; % convert to cell array

t.Data = PatientData;

Customize the Display

You can customize the display of a table in several ways. Use the ColumnName property to
add column headings. To create multiline headings, use the pipe (|) symbol.

t.ColumnName = {'LastName', 'Age', 'Weight', 'Height', 'Self Assessed|Health Status'};

 Programmatic App that Displays a Table

13-3

To adjust the widths of the columns, specify the ColumnWidth property. The
ColumnWidth property is a 1-by-N cell array, where N is the number of columns in the
table. Set a specific column width, or let MATLAB® set the width based on the contents.

t.ColumnWidth = {100, 'auto', 'auto', 'auto', 150};

To remove the row names, set the RowName property to an empty array ([]).

t.RowName = [];

13 Examples of Programmatic Apps

13-4

Resize the table and remove any extra space using the Position property.

t.Position = [15 25 495 200];

By default, tables use row striping. To turn off row striping, set the RowStriping
property to 'off'. To control the colors of the stripes, set two different colors for the
BackgroundColor property. Use the ForegroundColor property to control the color of
the text.

t.BackgroundColor = [.4 .4 .4; .4 .4 .8];
t.ForegroundColor = [1 1 1];

 Programmatic App that Displays a Table

13-5

Restrict Editing of Cell Values

To restrict the user's ability to edit data in the table, set the ColumnEditable property.
By default, data cannot be edited in the app. Setting the ColumnEditable property to
true for a column allows the user to edit data in that column.

t.ColumnEditable = [false true true true true];

Change Column Format

The ColumnFormat property controls how data is displayed and edited. To specify
choices in a drop-down list, specify a cell array of character vectors as the column format.
In this example, the Self Assessed Health Status column has a drop-down list containing
four options: Excellent, Fair, Good, and Poor.

13 Examples of Programmatic Apps

13-6

t.ColumnFormat = {[] [] [] [] {'Excellent', 'Fair', 'Good', 'Poor'}};

Create a Callback

The Table object has two commonly used callbacks. The CellSelectionCallback
executes when the user selects a different cell. The CellEditCallback executes when
the user changes a value in a cell.

t.CellEditCallback = @ageCheckCB;

For example, if you want the Age column to contain values between 0 and 120, set the
CellEditCallback to a function such as this one:

function ageCheckCB(src, eventdata)

if (eventdata.Indices(2) == 2 && ... % check if column 2
 (eventdata.NewData < 0 || eventdata.NewData > 120))
 tableData = src.Data;
 tableData{eventdata.Indices(1), eventdata.Indices(2)} = eventdata.PreviousData;
 src.Data = tableData; % set the data back to its original value
 warning('Age must be between 0 and 120.') % warn the user
end

end

If the user enters a value that is outside the acceptable range, the callback function
returns a warning and sets the cell value back to the previous value.

 Programmatic App that Displays a Table

13-7

Get All Table Properties

To see all the properties of the table, use the get command.

get(t)

 BackgroundColor: [2x3 double]
 BeingDeleted: 'off'
 BusyAction: 'queue'
 ButtonDownFcn: ''
 CellEditCallback: @ageCheckCB
 CellSelectionCallback: ''
 Children: [0x0 handle]
 ColumnEditable: [0 1 1 1 1]
 ColumnFormat: {[] [] [] [] {1x4 cell}}
 ColumnName: {5x1 cell}
 ColumnSortable: []
 ColumnWidth: {[100] 'auto' 'auto' 'auto' [150]}
 CreateFcn: ''
 Data: {100x5 cell}
 DeleteFcn: ''
 DisplayData: {100x5 cell}
 DisplayDataChangedFcn: ''
 Enable: 'on'
 Extent: [0 0 479 1842]
 FontAngle: 'normal'
 FontName: 'MS Sans Serif'
 FontSize: 8
 FontUnits: 'points'
 FontWeight: 'normal'
 ForegroundColor: [1 1 1]
 HandleVisibility: 'on'
 InnerPosition: [15 25 495 200]
 Interruptible: 'on'
 KeyPressFcn: ''
 KeyReleaseFcn: ''
 Layout: [0x0 matlab.ui.layout.LayoutOptions]
 OuterPosition: [15 25 495 200]
 Parent: [1x1 Figure]
 Position: [15 25 495 200]
 RearrangeableColumns: 'off'
 RowName: ''
 RowStriping: 'on'
 Tag: ''
 Tooltip: ''

13 Examples of Programmatic Apps

13-8

 Type: 'uitable'
 UIContextMenu: [0x0 GraphicsPlaceholder]
 Units: 'pixels'
 UserData: []
 Visible: 'on'

 Programmatic App that Displays a Table

13-9

App Designer

11

App Designer Basics

• “Create and Run a Simple App Using App Designer” on page 14-2
• “Migrating GUIDE Apps to App Designer” on page 14-6
• “Displaying Graphics in App Designer” on page 14-10
• “App Designer Preferences” on page 14-15

14

Create and Run a Simple App Using App Designer
App Designer provides a tutorial that guides you through the process of creating a simple
app containing a plot and a slider. The slider controls the amplitude of the plotted
function. You can create this app by running the tutorial, or you can follow the tutorial
steps listed below.

Run the Tutorial
To run the tutorial in App Designer, select Open > Interactive Tutorial on the Designer
tab in the App Designer toolstrip.

Tutorial Steps for Creating the App
Perform the following steps in App Designer.

14 App Designer Basics

14-2

1 Drag an Axes component from the Component Library onto the canvas.
2 Drag a Slider component from the Component Library onto the canvas. Place it

below the axes, as in the preceding image.
3 Replace the slider label text. Double-click the label and replace the word Slider

with Amplitude.

4 Above the canvas, click Code View to edit the code. (Notice that you can switch back
to edit your layout by clicking Design View.)

5 In the code view, add a callback function that executes MATLAB commands whenever
the user moves the slider. Right-click app.AmplitudeSlider in the Component
Browser. Then select Callbacks > Add ValueChangedFcn callback in the context
menu. App Designer creates a callback function and places the cursor in the body of
that function.

 Create and Run a Simple App Using App Designer

14-3

6 Plot the peaks function in the axes. Add this command to the second line of the
AmplitudeSliderValueChanged callback:

plot(app.UIAxes,value*peaks)

Notice that the plot command specifies the target axes (app.UIAxes) as the first
argument. The target axes is always required when you call the plot command in
App Designer.

7 Change the limits of the y-axis by setting the YLim property of the UIAxes object.
Add this command to the third line of the AmplitudeSliderValueChanged
callback:

app.UIAxes.YLim = [-1000 1000];

Notice that the command uses dot notation to access the YLim property. Always use
the pattern app.Component.Property to access property values.

8 Click Run to save and run the app. After saving your changes, your app is
available for running again in App Designer, or by typing its name (without
the .mlapp extension) at the MATLAB command prompt. When you run the app from
the command prompt, the file must be in the current folder or on the MATLAB path.

14 App Designer Basics

14-4

See Also

Related Examples
• “Managing Code in App Designer Code View” on page 17-2
• “Write Callbacks in App Designer” on page 17-18
• “Displaying Graphics in App Designer” on page 14-10

 See Also

14-5

Migrating GUIDE Apps to App Designer
App Designer is the recommended environment for building apps. Migrating your GUIDE
apps (GUIs) to App Designer allows you to take advantage of features that GUIDE does
not offer. For example, App Designer provides:

• An enhanced UI component set and design environment
• A robust programming editor and workflow
• The ability to create and share a standalone desktop or web app (requires MATLAB

Compiler™)

If you have existing apps that you developed in GUIDE, consider migrating them to App
Designer using the GUIDE to App Designer Migration Tool for MATLAB on
mathworks.com.

Features of the Migration Tool
The migration tool helps you convert your apps by reading in a GUIDE .fig file and
automatically generating the App Designer equivalent components, layout, and code in
an .mlapp file. This semi-automated code conversion also a creates a migration report
that suggests next steps for any manual code updates that may be needed. Some features
of the tool are described in the table below.

Migration
Tool
Features

Description

File
Conversio
n

Read in a GUIDE .fig file and associated code and then generate an App
Designer .mlapp file.

14 App Designer Basics

14-6

https://www.mathworks.com/matlabcentral/fileexchange/66087-guide-to-app-designer-migration-tool-for-matlab

Migration
Tool
Features

Description

Componen
ts and App
Layout

• Convert components and property configurations to App Designer
equivalents.

• Preserve the layout of the apps.

Callback
Code

• Retain a copy of the GUIDE callback code and user-defined functions in
the .mlapp file.

• Provide suggestions for manual update.

App Designer uses new components and object-oriented code. Interactions or
behaviors that you programmed in your old GUIDE-style code need to be
manually migrated to App Designer-style code.

Migration
Report

• Summarize actions successfully completed by the migration tool.
• List any limitations or unsupported functionality, with workarounds if

available.
• Provide steps for updating callbacks to make them compatible with App

Designer.

Aids for Migrating GUIDE Code to App Designer
App Designer and GUIDE have different code structures, callback syntaxes, and
techniques for accessing UI components and sharing data. Understanding these
differences is useful when migrating code. The table below summarizes some of these
differences.

 Migrating GUIDE Apps to App Designer

14-7

Difference GUIDE App Designer More
Information

Using Figures
and Graphics

GUIDE calls the figure
function to create the app
window.

GUIDE calls the axes
function to create axes for
displaying plots.

All MATLAB graphics
functions are supported.
There is no need to specify
the target axes.

App Designer calls the
uifigure function to
create the app window.

App Designer calls the
uiaxes function to create
axes for displaying plots.

Most MATLAB graphics
functions are supported. You
must specify the target axes.

“Displaying
Graphics in
App
Designer” on
page 14-10

Using
Components

GUIDE creates most
components with the
uicontrol function. Fewer
components are available.

App Designer creates each
UI component with its own
dedicated function. More
components are available,
including Tree, Gauge,
TabGroup, and
DatePicker.

“App Designer
Components”
on page 15-
2

Accessing
Component
Properties

GUIDE uses set and get to
access component
properties, and uses
handles to specify a
component.

For example,
name =
get(handles.Fig,'Name
')

App Designer supports set
and get, but encourages the
use of dot notation to access
component properties, and
uses app to specify a
component.

For example,
name =
app.UIFigure.Name

“Write
Callbacks in
App
Designer” on
page 17-18

Managing
App Code

The code is defined as a
main function that can call
local functions. All code is
editable.

The code is defined as a
MATLAB class. Only
callbacks, helper functions,
and custom properties are
editable.

“Managing
Code in App
Designer
Code View”
on page 17-
2

14 App Designer Basics

14-8

Difference GUIDE App Designer More
Information

Writing
Callbacks

Required callback input
arguments are handles,
hObject, and eventdata.

For example,
myCallback(hObject,ev
endata,handles)

Required callback input
arguments are app and
event.

For example,
myCallback(app,event)

“Write
Callbacks in
App
Designer” on
page 17-18

Sharing Data To store and share data
between callbacks and
functions, use the
UserData property, the
handles structure, or the
guidata, setappdata, or
getappdata functions.

For example,
handles.currSelection
= selection;
guidata(hObject,handl
es);

To store and share data
between callbacks and
functions, use custom
properties to create
variables.
For example,
app.currSelection =
selection

“Share Data
Within App
Designer
Apps” on
page 17-29

See Also

Related Examples
• “Create and Run a Simple App Using App Designer” on page 14-2
• “Displaying Graphics in App Designer” on page 14-10
• “Ways to Build Apps” on page 1-2

 See Also

14-9

Displaying Graphics in App Designer

In this section...
“Calling Graphics Functions” on page 14-10
“Displaying Plots Using Other Types of Axes” on page 14-11
“Unsupported Functionality” on page 14-12

Displaying graphics in App Designer requires a different workflow than you typically use
at the MATLAB command line. Once you understand this workflow and a few special
cases, you will know how to call the functions you need for displaying almost any type of
plot.

Calling Graphics Functions
Many of the graphics functions in MATLAB (and MATLAB toolboxes) have an argument
for specifying the target axes or parent object. This argument is optional in most contexts,
but when you call these functions in App Designer, you must specify that argument.
Otherwise, MATLAB uses gcf or gca to get the target object for the operation. However,
gcf cannot return an App Designer figure, and gca cannot return any axes within an App
Designer figure. Thus, omitting the argument might produce unexpected results.

This code shows how to specify the target axes when plotting two lines. The first
argument passed to plot and hold is app.UIAxes, which is the default name for the
App Designer axes.

plot(app.UIAxes,[1 2 3 4],'-r');
hold(app.UIAxes);
plot(app.UIAxes,[10 9 4 7],'--b');

Some functions (such as imshow and triplot) use a name-value pair argument to
specify the target object. For example, this code shows how to call the imshow function in
App Designer.

imshow('peppers.png','Parent',app.UIAxes);

Whether you specify the target object as the first argument or a name-value pair
argument depends on the function. See the documentation for the specific function you
want to use to determine the appropriate arguments.

14 App Designer Basics

14-10

Displaying Plots Using Other Types of Axes
You can create most 2-D and 3-D plots using the App Designer axes (a uiaxes object).
Starting in R2018b, you can create additional plots, such as those listed in the following
table. Most of these plots require a different type of parent object and additional lines of
code in your app. All of them use normalized units by default.

Functions Coding Details
polarplot
polarhistogram
polarscatter
compass

Create the polar axes by calling the polaraxes function. Specify
the parent container as the first input argument (for example,
app.UIFigure). Then call the plotting function with the polar
axes as the first argument. For example:

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);
pax = polaraxes(app.UIFigure);
polarplot(pax,theta,rho)

subplot Follow these steps:

1 Set the AutoResizeChildren property to 'off'. Subplots
do not support automatic resize behavior. You can set this
property in the App Designer Inspector tab of the
Component Browser or in your code.

2 Specify the parent container using the 'Parent' name-value
pair argument when you call subplot. Also, specify an output
argument to store the axes.

3 Call the plotting function with the axes as the first input
argument.

For example:

app.UIFigure.AutoResizeChildren = 'off';
ax1 = subplot(1,2,1,'Parent',app.UIFigure);
ax2 = subplot(1,2,2,'Parent',app.UIFigure);
plot(ax1,[1 2 3 4])
plot(ax2,[10 9 4 7])

 Displaying Graphics in App Designer

14-11

Functions Coding Details
pareto
plotmatrix

Follow these steps:

1 Set the AutoResizeChildren property to 'off'. These
plots do not support automatic resize behavior. You can set
this property in the App Designer Inspector tab of the
Component Browser or in your code.

2 Create the axes by calling the axes function. Specify the
parent container as the first input argument (for example,
app.UIFigure).

3 Call the pareto or plotmatrix function with the axes as the
first input argument.

For example:

app.UIFigure.AutoResizeChildren = 'off';
ax = axes(app.UIFigure);
pareto(ax,[10 20 40 40])

geobubble
heatmap
parallelplot
scatterhistogram
stackedplot
wordcloud

Specify the parent container when calling these functions (for
example, app.UIFigure) .

For example:

h = heatmap(app.UIFigure,rand(10));

geoplot
geoscatter
geodensityplot

Create the geographic axes by calling the geoaxes function.
Specify the parent container as the first input argument (for
example, app.UIFigure). Then call the plotting function with the
axes as the first argument. For example:

latSeattle = 47 + 37/60;
lonSeattle = -(122 + 20/60);
gx = geoaxes(app.UIFigure);
geoplot(gx,latSeattle,lonSeattle)

Unsupported Functionality
As of R2019a, some graphics functionality is not supported in App Designer. This table
lists the functionality that is relevant to most app building workflows.

14 App Designer Basics

14-12

Category Not Supported
Animation • For example, movie, getframe.
Annotations • Annotations created with the annotation function.
Retrieving and
Saving Data

• For example, hgexport, hgload, hgsave, save, load, savefig,
openfig, and saveas.

Figures created programmatically with uifigure do support the
save, load, savefig, and openfig functions.

Utilities • findfigs, gca, gcf, gco, clf, print, ginput, gtext.
Functions not
Recommended

• For example, ezplot and hist.

Axes in Grid
Layout
Managers or
Scrollable
Containers

• Grid layout managers and scrollable containers do not support
axes, polaraxes, geoaxes, or charts (such as heatmap,
geobubble, or stackedplot) that can be the child of a figure.

• uiaxes does not have these limitations.

Workarounds:

• To work around the grid layout manager limitation, place the axes
or chart into a panel. Then place the panel into the grid.

• To work around the scrollable container limitation, place the axes
or chart into a panel with the Scrollable property set to 'off'.
Then place the panel into the scrollable container.

Components • uicontrol, uitoolbar, and uicontextmenu are not supported
in App Designer. However, App Designer supports a new set of
components, including tabs, trees, switches, and gauges. For a full
list of supported components, see “Designing Apps in App
Designer”.

Properties • Some component properties are not supported in App Designer. For
a list of supported properties for a particular component, see its
property page on “Designing Apps in App Designer”.

See Also
UI Figure | UIAxes

 See Also

14-13

More About
• Displaying Graphics in App Designer (R2018b)
• Graphics Support in App Designer (R2017b - R2018a)
• Graphics Support in App Designer (R2016a - R2017a)
• “Migrating GUIDE Apps to App Designer” on page 14-6
• “Create Polar Axes Programmatically in an App” on page 18-12

14 App Designer Basics

14-14

https://www.mathworks.com/help/releases/R2018b/matlab/creating_guis/graphics-support-in-app-designer.html
https://www.mathworks.com/help/releases/R2018a/matlab/creating_guis/graphics-support-in-app-designer.html
https://www.mathworks.com/help/releases/R2017a/matlab/creating_guis/graphics-support-in-app-designer.html

App Designer Preferences
You can set App Designer preferences in the MATLAB Preferences dialog box. To open the
dialog box, click Preferences in the MATLAB Toolstrip. Then, select App Designer in
the left pane.

This table describes each option in the right pane.

Option Description
Show grid with interval When selected, App Designer overlays a

grid onto the canvas as an alignment aide.
You can change the grid spacing to a
specific number of pixels. The default
spacing is 10.

 App Designer Preferences

14-15

Option Description
Snap to grid When selected, the upper left corner of a

component always snaps to the intersection
of two grid lines whenever you resize or
move the component on the canvas.

Show alignment hints When selected, App Designer displays
alignment hints as you resize or move a
component on the canvas.

Show resizing hints When selected, App Designer displays the
size of a component as you resize it on the
canvas.

Font Size You can change the font size that displays
in App Designer Code View. The font size
can range from 14–48 pixels. The default
font size is 14 pixels.

Enable app coding alerts When selected, App Designer flags coding
problems in the editor as you write code.

Include component labels in
Component Browser

When selected, labels included with
components (such as edit fields) appear as
separate items in the Component
Browser. When this item is not selected,
those labels do not appear in the
Component Browser.

Number of entries (most recently used
file list)

This number specifies how many of the
most recently accessed apps appear under
the Recent Files section of the Open menu
in the Designer tab.

Automatic File Changes When selected, App Designer automatically
saves changes to an app when you click
away from it to switch between apps or to
bring another window into focus. If an app
has not already been saved at least once,
autosave has no effect.

14 App Designer Basics

14-16

See Also

Related Examples
• “Lay Out Apps in App Designer” on page 16-2

 See Also

14-17

Component Choices and
Customizations

• “App Designer Components” on page 15-2
• “Table Array Data Types in App Designer Apps” on page 15-11
• “Add UI Components to App Designer Programmatically” on page 15-18

15

App Designer Components
App Designer provides a large set of components for designing modern, full-featured
applications. The tables below list the components that are available in the Component
Library:

• “Common Components” on page 15-3 — Include axes for creating plots, and several
components that respond to interactions, such as buttons, sliders, drop-down lists, and
trees.

• “Containers and Figure Tools” on page 15-6 — Include panels and tabs for grouping
components, as well as menu bars.

• “Instrumentation” on page 15-8 — Include gauges and lamps for visualizing status,
as well as knobs and switches for selecting input parameters.

• “Toolbox Components” on page 15-10— Include toolbox authored UI components.
Requires additional toolbox license and installation.

To add a component to your app, drag it onto the canvas from the Component Library.
Then use the Inspector tab of the Component Browser to modify characteristics of the
component, such as the color, font, or text.

15 Component Choices and Customizations

15-2

Common Components
Component Example More Information
Axes UIAxes

Button Button

Check Box CheckBox

Date Picker DatePicker
Properties

 App Designer Components

15-3

Component Example More Information
Drop Down DropDown

Edit Field
(Numeric)

NumericEditField

Edit Field (Text) EditField

Image Image Properties

Label Label

List Box ListBox

15 Component Choices and Customizations

15-4

Component Example More Information
Radio Button
Group

ButtonGroup
RadioButton

Slider Slider

Spinner Spinner

State Button StateButton

Table Table

Text Area TextArea

 App Designer Components

15-5

Component Example More Information
Toggle Button
Group

ButtonGroup
ToggleButton

Tree Tree
TreeNode

Containers and Figure Tools
Component Example More Information
Grid Layout GridLayout

Properties

15 Component Choices and Customizations

15-6

Component Example More Information
Panel Panel

Tab Group TabGroup
Tab

Menu Bar Menu

 App Designer Components

15-7

Instrumentation
Component Example More Information
Gauge Gauge

90 Degree Gauge NinetyDegreeGauge

Linear Gauge LinearGauge

Semicircular
Gauge

SemicircularGauge

Knob Knob

15 Component Choices and Customizations

15-8

Component Example More Information
Discrete Knob DiscreteKnob

Lamp Lamp

Switch Switch

Rocker Switch RockerSwitch

Toggle Switch ToggleSwitch

 App Designer Components

15-9

Toolbox Components
App Designer supports Aerospace Toolbox components. For more information, see “Flight
Instruments” (Aerospace Toolbox). To use toolbox components, a valid license and
installation of the associated toolbox is required.

See Also

Related Examples
• “Create and Run a Simple App Using App Designer” on page 14-2
• “Add UI Components to App Designer Programmatically” on page 15-18

15 Component Choices and Customizations

15-10

Table Array Data Types in App Designer Apps

Note Only App Designer apps and figures created with the uifigure function support
table arrays. For information on displaying table data in traditional figures, see
“Programmatic App that Displays a Table” on page 13-2.

Table arrays are useful for storing tabular data as MATLAB variables. For example, you
can call the readtable function to create a table array from a spreadsheet.

Table UI components, by contrast, are user interface components that display tabular
data in apps. Starting in R2018a, the types of data you can display in a Table UI
component include table arrays.

When you display table array data in apps, you can take advantage of the interactive
features for certain data types. And unlike other types of arrays that Table UI
components support, table array data does not display according to the ColumnFormat
property of the Table UI component.

Logical Data
In a Table UI component, logical values display as check boxes. true values are
checked, whereas false values are unchecked. When the ColumnEditable property of
the Table UI component is true, the user can select and clear the check boxes in the
app.

f = uifigure;
tdata = table([true; true; false]);
uit = uitable(f,'Data',tdata);

 Table Array Data Types in App Designer Apps

15-11

Categorical Data
categorical values can appear as drop-down lists or as text. The categories appear in
drop-down lists when the ColumnEditable property of the Table UI component is
true. Otherwise, the categories display as text without a drop-down list.

f = uifigure;
cnames = categorical({'Blue';'Red'},{'Blue','Red'});
w = [400; 700];
tdata = table(cnames,w,'VariableNames',{'Color','Wavelength'});
uit = uitable(f,'Data',tdata,'ColumnEditable',true);

If the categorical array is not protected, users can add new categories in the running
app by typing in the cell.

Datetime Data
datetime values display according to the Format property of the corresponding table
variable (a datetime array).

f = uifigure;
dates = datetime([2016,01,17; 2017,01,20],'Format','MM/dd/uuuu');
m = [10; 9];
tdata = table(dates,m,'VariableNames',{'Date','Measurement'});
uit = uitable(f,'Data',tdata);

15 Component Choices and Customizations

15-12

To change the format, use dot notation to set the Format property of the table variable.
Then, replace the data in the Table UI component.

tdata.Date.Format = 'dd/MM/uuuu';
uit.Data = tdata;

When the ColumnEditable property of the Table UI component is true, users can
change date values in the app. When the column is editable, the app expects input values
that conform to the Format property of the datetime array. If the user enters an invalid
date, the value displayed in the table is NaT.

Duration Data
duration values display according to the Format property of the corresponding table
variable (a duration array).

f = uifigure;
mtime = duration([0;0],[1;1],[20;30]);
dist = [10.51; 10.92];
tdata = table(mtime,dist,'VariableNames',{'Time','Distance'});
uit = uitable(f,'Data',tdata);

To change the format, use dot notation to set the Format property of the table variable.

tdata.Time.Format = 's';
uit.Data = tdata;

 Table Array Data Types in App Designer Apps

15-13

Cells containing duration values are not editable in the running app, even when
ColumnEditable of the Table UI component is true.

Nonscalar Data
Nonscalar values display in the app the same way as they display in the Command
Window. For example, this table array contains 3-D arrays and struct arrays.

f = uifigure;
arr = {rand(3,3,3); rand(3,3,3)};
s = {struct; struct};
tdata = table(arr,s,'VariableNames',{'Array','Structure'});
uit = uitable(f,'Data',tdata);

A multicolumn table array variable displays as a combined column in the app, just as it
does in the Command Window. For example, the RGB variable in this table array is a 3-
by-3 array.

n = [1;2;3];
rgbs = [128 122 16; 0 66 155; 255 0 0];
tdata = table(n,rgbs,'VariableNames',{'ROI','RGB'})

tdata =

 3×2 table

 ROI RGB
 ___ _________________

 1 128 122 16

15 Component Choices and Customizations

15-14

 2 0 66 155
 3 255 0 0

The Table UI component provides a similar presentation. Selecting an item in the RGB
column selects all the subcolumns in that row. The values in the subcolumns are not
editable in the running app, even when ColumnEditable property of the Table UI
component is true.

f = uifigure;
uit = uitable(f,'Data',tdata);

Missing Data Values
Missing values display as indicators according to the data type:

• Missing strings display as <missing>.
• Undefined categorical values display as <undefined>.
• Invalid or undefined numbers or duration values display as NaN.
• Invalid or undefined datetime values display as NaT.

If the ColumnEditable property of the Table UI component is true, then the user can
correct the values in the running app.

f = uifigure;
sz = categorical([1; 3; 4; 2],1:3,{'Large','Medium','Small'});
num = [NaN; 10; 12; 15];
tdata = table(sz,num,'VariableNames',{'Size','Number'});
uit = uitable(f,'Data',tdata,'ColumnEditable',true);

 Table Array Data Types in App Designer Apps

15-15

Example: App that Displays a Table Array
This app shows how to display a Table UI component in an app that uses table array
data. The table array contains numeric, logical, categorical, and multicolumn
variables.

The StartupFcn callback loads a spreadsheet into a table array. Then a subset of the
data displays and is plotted in the app. One plot displays the original table data. The other
plot initially shows the same table data, and then updates when the user edits a value or
sorts a column in the Table UI component.

15 Component Choices and Customizations

15-16

See Also
Table (App Designer) | uitable

Related Examples
• “Write Callbacks in App Designer” on page 17-18
• “Create Helper Functions in App Designer” on page 17-25

 See Also

15-17

Add UI Components to App Designer Programmatically
Most UI components are available in the App Designer Component Library for you to
drag and drop onto the canvas. Occasionally, you might need to add components
programmatically in Code View. Here are a few common situations:

• Creating components that are not available in the Component Library. For example,
an app that displays a dialog box must call the appropriate function to display the
dialog box.

• Creating components dynamically according to run-time conditions.

When you add UI components programmatically, you must call the appropriate function to
create the component, assign a callback to the component, and then write the callback as
a helper function.

Create the Component and Assign the Callback
Call the function that creates the component from within an existing callback (for a list of
component functions, see “Designing Apps in App Designer”). The StartupFcn callback
is a good place to create components because that callback runs when the app starts up.
In other cases, you might create components within a different callback function. For
example, if you want to display a dialog box when the user presses a button, call the
dialog box function from within the button's callback function.

When you call a function to create a component, specify the figure or one of its child
containers as the parent object. For example, this command creates a button and
specifies the figure as the parent object. In this case, the figure has the default name that
App Designer assigns (app.UIFigure).

b = uibutton(app.UIFigure);

Next, specify the component's callback property as a function handle of the form
@app.callbackname. For example, this command sets the ButtonPushedFcn property
of button b to a callback function named mybuttonpress.

b.ButtonPushedFcn = @app.mybuttonpress;

15 Component Choices and Customizations

15-18

Write the Callback
Write the callback function for the component as a private helper function. The function
must have app, src, and event as the first three arguments. Here is an example of a
callback written as a private helper function.

methods (Access = private)

 function mybuttonpress(app,src,event)
 disp('Have a nice day!');
 end

end

To write a callback that accepts additional input arguments, specify the additional
arguments after the first three. For example, this callback has accepts two additional
inputs, x and y:

methods (Access = private)

 function addxy(app,src,event,x,y)
 disp(x + y);
 end

end

To assign this callback to a component, specify the component's callback property as cell
array. The first element in the cell array must be the function handle. Subsequent
elements must be the additional input values. For example:

b.ButtonPushedFcn = {@app.addxy,10,20};

Example: Confirmation Dialog Box with a Close Function
This app shows how to display a confirmation dialog box that executes a callback when
the dialog box closes.

When the user clicks the window's close button (X), a dialog box displays to confirm that
the user wants to close the app. When the user dismisses the dialog box, the CloseFcn
callback executes.

 Add UI Components to App Designer Programmatically

15-19

Example: App that Populates Tree Nodes Based on a Data File
This app shows how to dynamically add tree nodes at run time. The three hospital nodes
exist in the tree before the app runs. However at run time, the app adds several child
nodes under each hospital name. The number of child nodes, and the labels on the child
nodes are determined by the contents of the patients.xls spreadsheet.

When the user clicks a patient name in the tree, the Patient Information panel displays
data such as age, gender, and health status. The app stores changes to the data in a table
array.

15 Component Choices and Customizations

15-20

See Also

More About
• “Write Callbacks in App Designer” on page 17-18
• “Create Helper Functions in App Designer” on page 17-25

 See Also

15-21

App Layout

• “Lay Out Apps in App Designer” on page 16-2
• “Managing Resizable Apps in App Designer” on page 16-9
• “Using Grid Layout Managers” on page 16-12
• “Apps with Auto-Reflow” on page 16-19

16

Lay Out Apps in App Designer
Design View in App Designer provides a rich set of layout tools for designing modern,
professional-looking applications. It also provides an extensive library of UI components,
so you can create a variety of interactive features. Any changes you make in Design View
are automatically reflected in Code View. Thus, you can configure many aspects of your
app without writing any code.

To add a component to your app, drag it from the Component Library onto the canvas.

The name of the component appears in the Component Browser after you add it to the
canvas. You can select components in either the canvas or the Component Browser. The
selection occurs in both places simultaneously.

Some components, such as edit fields and sliders, are grouped with a label when you drag
them onto the canvas. These labels do not appear in the Component Browser by default,
but you can add them to the list by right-clicking anywhere in the Component Browser
and selecting Include component labels in Component Browser. If you do not want

16 App Layout

16-2

the component to have a label, you can exclude it by pressing and holding the Ctrl key as
you drag the component onto to the canvas.

If a component has a label, and you change the label text, the name of the component in
the Component Browser changes to match that text. You can customize the name of the
component by double-clicking it and typing a new name.

Customizing Components
You can customize the appearance of a component by selecting it and then editing its
properties in the Inspector tab of the Component Browser. For example, from this tab
you can change the alignment of the text that displays on a button.

Some properties control the behavior of the component. For example, you can change the
range of values that a numeric edit field accepts by changing the Limits property.

 Lay Out Apps in App Designer

16-3

When the app runs, the edit field accepts values only within that range.

You can edit some properties directly in the canvas by double-clicking the component. For
example, you can edit a button label by double-clicking it and typing the desired text. To
add multiple lines of text, hold down the Shift key and press Enter.

16 App Layout

16-4

Aligning and Spacing Components
In Design View, you can arrange and resize components by dragging them on the
canvas, or you can use the tools available in the Canvas tab of the toolstrip.

App Designer provides alignment hints to help you align components as you drag them in
the canvas. Orange dotted lines passing through the centers of multiple components
indicate that their centers are aligned. Orange solid lines at the edges indicate that the
edges are aligned. Perpendicular lines indicate that a component is centered in its parent
container.

As an alternative to dragging components on the canvas, you can align components using
the tools in the Align section of the toolstrip.

When you use an alignment tool, the selected components align to an anchor component.
The anchor component is the last component selected, and it has a thicker selection
border than the other components. To select a different anchor, hold down the Ctrl or
Shift key and click the desired component twice (once to deselect the component, and a
second time to select it again). For example, in the following image, the Format Options
label is the anchor. Clicking the Align left button aligns the left edges of the drop-
down and check box to the left edge of the label.

 Lay Out Apps in App Designer

16-5

You can control the spacing among neighboring components using the tools in the Space
section of the toolstrip. Select a group of three or more components, and then select an
option from the drop-down list in the Space section of the toolstrip. The Evenly option
distributes the space evenly within the space occupied by the components. The 20 option
spaces the components 20 pixels apart. If you want to customize the number of pixels
between the components, type a number into the drop-down list.

Next, click Apply Horizontally or Apply Vertically . For example, select Evenly
and then click Apply Vertically to distribute the space among a vertical stack of
components.

16 App Layout

16-6

Grouping Components
You can group two or more components together to modify them as a single unit. For
example, you might group a set of components after finalizing their relative positions, so
that you can move them without changing that relationship.

To group a set of components, select them in the canvas, and then select Grouping >
Group in the Arrange section of the toolstrip.

The Grouping tool also provides functionality for these common tasks:

• Ungroup all components in a group — Select the group. Then select Grouping >
Ungroup.

• Add a component to a group — Select the component and the group. Then select
Grouping > Add to Group.

• Remove a component from a group — Select the component. Then select Grouping >
Remove from Group.

Arranging Components in Containers
When you drag a component into a container such as a panel, the container turns blue to
indicate that the component is a child of the container. This process of placing
components into containers is called parenting.

 Lay Out Apps in App Designer

16-7

The Component Browser shows the parent–child relationship by indenting the name of
the child component under the parent container.

See Also

More About
• “App Designer Components” on page 15-2
• “App Designer Keyboard Shortcuts” on page 19-2
• “Managing Resizable Apps in App Designer” on page 16-9

16 App Layout

16-8

Managing Resizable Apps in App Designer
Apps you create in App Designer are resizable by default. The components reposition and
resize automatically as the user changes the size of the window at run-time. This
automatic resize behavior is controlled by the AutoResizeChildren property. By
default, this property is enabled for the figure and child containers such as panels and
tabs.

When the AutoResizeChildren property is enabled for a container, MATLAB manages
the size and position of only the immediate children in the container. Components in
nested containers are managed by the AutoResizeChildren property of their
immediate parent. To ensure that the alignment of components relative to one another
(like a grouping of buttons) is preserved when your app is resized, parent the grouping of
components to a panel, instead of directly to the figure.

Resizing Components with Normalized Position Units
When a child component of a resizable container has normalized position units, certain
properties of the component are affected after the parent container is resized. For
example,

If axes or charts use a value of 'normalized' for the Units property and are parented
to a container with the AutoResizeChildren property set to 'on', then

 Managing Resizable Apps in App Designer

16-9

• The value of the OuterPosition property for the axes or chart will change when the
app is resized.

• The axes or chart will not shrink smaller than a minimum size when the app is resized.

If you want to avoid either of these behaviors, set the AutoResizeChildren property of
the container to 'off'.

Disabling Automatic Resizing
You can disable the automatic resize behavior of a container by disabling the property. To
disable the property in App Designer, select the container and clear the
AutoResizeChildren check box in the Inspector tab of the Component Browser.

Whenever you select or clear this check box, App Designer sets the property to the same
value on all its child containers. To set the AutoResizeChildren property of a child
container to a different value, set the value for the child container after setting the value
for the parent.

You can also set the property programmatically by setting the value to 'on' or 'off'.
When you set the property programmatically, the value does not change for the child
containers.

16 App Layout

16-10

app.UIFigure.AutoResizeChildren = 'off';

To completely disable resizing, set the Resize property of the figure to 'off'.

Customizing Resize Behavior Using a SizeChangedFcn
Callback
If the automatic resize behavior is not the behavior that you want, disable the
AutoResizeChildren property and write a SizeChangedFcn callback for the
container. In this callback, you write code to adjust the Position property of the child
components. The callback executes when the size of the container changes.

For example, a SizeChangedFcn might contain code that keeps the width of an edit field
at one quarter of the width of the figure.

figwidth = app.UIFigure.Position(3);
app.EditField.Position(3) = .25 * figwidth;

Note Starting in R2017a, you must disable the AutoResizeChildren property to allow
the SizeChangedFcn callback to execute. For more information, see “App Designer:
Disable automatic resize behavior when writing SizeChangedFcn callbacks”.

See Also
UI Figure

More About
• “Lay Out Apps in App Designer” on page 16-2
• “Write Callbacks in App Designer” on page 17-18
• “Apps with Auto-Reflow” on page 16-19

 See Also

16-11

Using Grid Layout Managers

Note Grid layout managers are only for apps created using the uifigure function.

When you design an app using a grid layout manager, you place components in the rows
and columns of an invisible grid. Using a grid layout is straightforward, but it is important
to understand the relationship between the grid, its parent container, and the components
that the grid manages.

When you create a grid, it always spans the entire app window or container that you
place it in. You must configure its rows and columns so that they divide the space of the
parent container appropriately.

To configure the rows and columns, specify the RowHeight and ColumnWidth properties
of the grid. Specify the value of each property as a cell array. The length of the cell array
controls the number of rows or columns. For example, to create a grid that has three
rows, specify the RowHeight property as a 1-by-3 cell array. The values in each cell array
control the size of each row or column.

There are two types of sizes:

• Fixed size in pixels — Specify a number. The size of the row or column is fixed at the
number of pixels you specify. When the parent container resizes, the size does not
change.

• Variable size — Specify a number paired with an 'x' character (for example, '1x').
When the parent container resizes, the row or column grows or shrinks. Variable-size
rows and columns fill the remaining space that the fixed rows or columns do not use.
The number you pair with the 'x' character is a weight for dividing up the remaining
space among all the variable-size rows or columns.

For example, this code creates a 2-by-3 grid. The first row is fixed at 25 pixels high, while
the second row has a variable height. The first two columns are 100 pixels wide, and the
last column has a variable width.

f = uifigure;
g = uigridlayout(f);
g.RowHeight = {25,'1x'};
g.ColumnWidth = {100,100,'1x'};

16 App Layout

16-12

The grid is invisible, but this picture includes lines to illustrate how the space is
distributed.

To place a component in a specific row and column of the grid, you must:

• Specify the grid as the parent of the component.
• Specify the target row and column by setting the Layout property of the component.

For example, this code creates a grid that has the default size (two '1x' rows and two
'1x' columns). Then it places a list box in the first row and second column of that grid.

g = uigridlayout;
list = uilistbox(g);
list.Layout.Row = 1;
list.Layout.Column = 2;

Again, the grid lines in this picture do not appear in the figure.

 Using Grid Layout Managers

16-13

If you add components and do not specify the Layout property, the grid places the
components in default locations. The components fill the grid from left to right and top to
bottom initially. For example, this code creates a 2-by-2 grid containing four components
in the default order.

f = uifigure;
g = uigridlayout(f);
g.RowHeight = {25,'1x'};
g.ColumnWidth = {100,'1x'};
b = uibutton(g,'Text','Open File');
dd = uidropdown(g,'Items',{'Scatter Plot','Line Plot'});
list = uilistbox(g,'Items',{'one','two'});
ax = uiaxes(g);

16 App Layout

16-14

If you reconfigure the grid after adding components to it, the grid does not redistribute
the components. For example, if you add a third column in the preceding example, the
grid does not shift the list box back to the third column of the first row.

g.ColumnWidth = {100,'1x','1x'};

 Using Grid Layout Managers

16-15

Some changes you make in the layout can change the size of the grid. For example,
adding a component to a fully populated grid adds a row to accommodate the new
component.

To view the list of component objects in the grid, query the Children property of the
grid. Changing the order in the list does not change the layout in the grid.

Example: Hide Rows Based on Run-Time Conditions
This example shows how to hide components within a row of a grid based on the on the
user's selection in a drop-down menu. The code performs these high-level tasks:

• Creates grid1, a 1-by-2 grid in the figure that manages a panel and an axes
component.

• Creates grid2, a 3-by-2 grid inside the panel. This grid manages the layout of a drop-
down menu, two spinners, and their labels.

16 App Layout

16-16

• Creates a callback function called findMethodSelected for the drop-down menu.
When the value of the drop-down menu changes to 'Quartiles', the callback hides
the components in second row of grid2 by setting grid.RowHeight{2} to 0.

Create a program file called showhide.m. Then paste this code into the file and run it.

function showhide

 f = uifigure('Name','Statistical Analysis');

 % Create grid1 in the figure
 grid1 = uigridlayout(f);
 grid1.RowHeight = {'1x'};
 grid1.ColumnWidth= {220,'1x'};

 % Add a panel and axes
 p = uipanel(grid1);
 ax = uiaxes(grid1);

 % Create grid2 in the panel
 grid2 = uigridlayout(p);
 grid2.RowHeight = {22, 22, 22};
 grid2.ColumnWidth = {80,'1x'};

 % Add method label and drop-down
 findMethodLabel = uilabel(grid2,'Text','Find Method:');
 findMethod = uidropdown(grid2,'Items',{'Moving median','Quartiles'});
 findMethod.ValueChangedFcn = @findMethodSelected;

 % Add window size label and spinner
 winSizeLabel = uilabel(grid2,'Text','Window Size:');
 winSize = uispinner(grid2,'Value',0);

 % Add threshold label and spinner
 thresLabel = uilabel(grid2,'Text','Threshold:');
 thres = uispinner(grid2,'Value',3);

 function findMethodSelected(src,~)
 method = src.Value;

 switch method
 case 'Quartiles'
 % Collapse the second row (hides winSize spinner)
 grid2.RowHeight{2} = 0;

 Using Grid Layout Managers

16-17

 case 'Moving median'
 % Expand the second row
 grid2.RowHeight{2} = 22;
 end
 end
end

When you set the Find Method to Quartiles in the app, the Window Size label and the
spinner next to it become hidden.

See Also
GridLayout Properties | uigridlayout

16 App Layout

16-18

Apps with Auto-Reflow
Apps with auto-reflow are preconfigured app types that optimize the viewing experience
by automatically adjusting the size, location, and visibility of the app content in response
to screen size, orientation, and platform. Use apps with auto-reflow if you expect to run or
share your apps across multiple environments or desktop resolutions.

Auto-Reflow Behavior
The App Designer Start Page includes 2-panel and 3-panel apps with auto-resize and auto-
reflow, and canvas interactions to guide app building. No additional code is needed to
achieve the reflowing and resizing behavior.

Apps with auto-reflow extend the existing auto-resize behaviors that are on by default in
all App Designer apps. These apps detect and adapt to the available screen size when
they are first displayed. Both 2- and 3-panel apps have a large flexible-size panel,
intended for visualizations like plots. As the app changes size, the large panel grows or
shrinks, depending on the space available.

 Apps with Auto-Reflow

16-19

When an app is resized beyond a certain predefined threshold, the panels in the app
reflow and reorder to make the best use of the space. As panels reorder themselves, they
and the components in them dynamically adjust in size while extra space between
components (whitespace) is also reduced.

16 App Layout

16-20

When an app becomes very small, auto-resize stops eliminating whitespace and resizing
components. This can put some components outside the visible part of the window. To
access these components, set the Scrollable property of the panels to'on'. This
enables scroll bars to appear when necessary.

Example: Using Apps with Auto-Reflow
This example shows how to create components within the panels of an app with auto-
reflow. Controls for data selection are parented to the left panel, and data visualizations
are parented to two tabs in the right panel. Change the size of the app window at run
time to demonstrate the resize and reflow behaviors.

 Apps with Auto-Reflow

16-21

See Also
appdesigner

16 App Layout

16-22

App Programming

• “Managing Code in App Designer Code View” on page 17-2
• “Startup Tasks and Input Arguments in App Designer” on page 17-8
• “Creating Multiwindow Apps in App Designer” on page 17-12
• “Write Callbacks in App Designer” on page 17-18
• “Create Helper Functions in App Designer” on page 17-25
• “Share Data Within App Designer Apps” on page 17-29
• “Compatibility Between Different Releases of App Designer” on page 17-33
• “Use One Callback for Multiple App Designer Components” on page 17-36

17

Managing Code in App Designer Code View
Code View provides most of the same programming features that the MATLAB Editor
provides. It also provides a rich set of features that help you to navigate your code and
avoid many tedious tasks. For example, you can search for a callback by typing part of its
name in a search bar. Clicking a search result scrolls the editor to the definition of that
callback. And if you change the name of a callback, App Designer automatically updates
all references to it in your code.

Managing Components, Functions, and Properties
Code View has three panes to help you manage different aspects of your code. This table
describes each of them.

Pane Name Pane Appearance Pane Features
Component
Browser

• Context menu — Right-click a component in
the list to display a context menu that has
options for deleting or renaming the
component, adding a callback, or displaying
help. Select the Include Component
Labels in Component Browser option to
display grouped component labels.

• Search bar —Quickly locate a component by
typing part of its name in the search bar.

• Inspector tab — Use this tab to view or
change property values for the component
that is currently selected. You can also
search for a property by typing part of the
name in the search bar at the top of this tab.

• Callbacks tab — Use this tab to manage the
callbacks for the component that is selected.

17 App Programming

17-2

Pane Name Pane Appearance Pane Features
Code
Browser

• Callbacks, Functions, and Properties tabs
— Use these tabs to add, delete, or rename
any of the callbacks, helper functions, or
custom properties in your app. Clicking an
item in the Callbacks or Functions tab
scrolls the editor to the corresponding
section in your code. Rearrange the order of
callbacks by selecting the callback you want
to move and then, drag and drop the
callback into its new position in the list. This
also repositions the callback in the editor.

• Search bar — Quickly locate a callback,
helper function, or property by typing part of
its name in the search bar.

App Layout • App thumbnail — Use the thumbnail image
to locate components in large, complex apps
that have many components. Selecting a
component in the thumbnail selects the
component in the Component Browser.

Identifying Editable Sections of Code
In the editor, some sections of code are editable and some are not. Gray sections of code
are not editable. Those sections are generated and managed by App Designer. However,
white sections are editable, and they correspond to:

• The body of functions you define (e.g., callbacks and helper functions)
• Custom property definitions

 Managing Code in App Designer Code View

17-3

Programming Your App
App Designer defines your app as a MATLAB class. You do not need to understand classes
or object-oriented programming to create an app because App Designer manages those
aspects of the code. However, programming in App Designer requires a different
workflow than working strictly with functions. You can review a summary of this workflow
at any time by clicking the Show Tips button in the Resources tab of the toolstrip.

Managing UI Components

When you add a UI component to your app, App Designer assigns a default name to the
component. Use that name (including the app prefix) to refer to the component in your
code. You can change the name of a component by double-clicking the name in the
Component Browser and typing a new name. App Designer automatically updates all
references to that component when you change its name.

17 App Programming

17-4

To use the name of a component in your code, you can save some time by copying the
name from the Component Browser. Right-click the component name and select Insert
at Cursor. Alternatively, you can drag the component name from the list into your code.

To delete a component, select its name in the Component Browser and press the Delete
key.

Managing Callbacks

To make a component respond to user interactions, add a callback. Right-click the
component in the Component Browser and select Callbacks > Add (callback
property) callback.

If you delete a component from your app, App Designer deletes the associated callback
only if the callback has not been edited and is not shared with other components.

To delete a callback manually, select the callback name in the Callbacks tab of the Code
Browser and press the Delete key.

For more information about callbacks, see “Write Callbacks in App Designer” on page 17-
18.

 Managing Code in App Designer Code View

17-5

Sharing Data Within Your App

To store data, and share it among different callbacks, create a custom property. For
example, you might want your app to read a data file and allow different callbacks in your
app to access that data.

To create a property, expand the Property drop-down in the Editor tab, and select
Private Property or Public Property. App Designer creates a template property
definition and places your cursor next to that definition. Change the name of the property
as desired.

properties (Access = public)
 X % Average cost
end

To reference the property in your code, use dot notation of the form app.Propertyname.
For example, app.X references the property named X.

For more information about creating and using custom properties, see “Share Data Within
App Designer Apps” on page 17-29.

Single-Sourcing Code that Runs in Multiple Places

If you want to execute a block of code in multiple parts of your app, create a helper
function. For example, you might want to update a plot after the user changes a number
in an edit field or selects an item in a drop-down list. Creating a helper function allows
you to single-source the common commands and avoid having to maintain redundant sets
of code.

To add a helper function, expand the Function drop-down in the Editor tab, and
select Private Function or Public Function. App Designer creates a template function
and places your cursor in the body of that function.

To delete a helper function, select the function name in the Functions tab of the Code
Browser and press the Delete key.

For more information about writing helper functions, see “Create Helper Functions in App
Designer” on page 17-25.

Creating Input Arguments

To add input arguments to your app, click App Input Arguments in the Editor tab.
Input arguments are commonly used for creating apps that have multiple windows. For

17 App Programming

17-6

more information, see “Startup Tasks and Input Arguments in App Designer” on page 17-
8.

Fixing Coding Problems and Run-Time Errors
Like the MATLAB Editor, the Code View editor provides Code Analyzer messages to help
you discover errors in your code.

If you run your app directly from App Designer (by clicking Run), App Designer
highlights the source of errors in your code, should any errors occur at run time. To hide
the error message, click the error indicator (the red circle). To make the error indicator
disappear, fix your code and save your changes.

See Also

Related Examples
• “Write Callbacks in App Designer” on page 17-18
• “Share Data Within App Designer Apps” on page 17-29
• “Create Helper Functions in App Designer” on page 17-25
• “Startup Tasks and Input Arguments in App Designer” on page 17-8

 See Also

17-7

Startup Tasks and Input Arguments in App Designer
App Designer allows you to create a special function that executes when the app starts
up, but before the user interacts with the UI. This function is called the StartupFcn
callback, and it is useful for setting default values, initializing variables, or executing
commands that affect initial state of the app. For example, you might use the
StartupFcn callback to display a default plot or a show a list of default values in a table.

Create a StartupFcn Callback
To create a StartupFcn callback, right-click the UIFigure component in the
Component Browser, and select Callbacks > Add StartupFcn callback.

App designer creates the function and places the cursor in the body of the function. Add
commands to this function as you would do for any callback function. Then save and run
your app.

17 App Programming

17-8

See “App with Auto-Reflow that Updates Plot Based on User Selections” on page 18-4
for an example of an app that has a StartupFcn callback.

Define Input App Arguments
The StartupFcn callback is also the function where you can define input arguments for
your app. Input arguments are useful for letting the user (or another app) specify initial
values when the app starts up.

To add input arguments to an app, open the app in App Designer and click Code View.
Then click App Input Arguments in the Editor tab.

The App Input Arguments dialog box allows you to add or remove input arguments in
the function signature of the StartupFcn callback. The app argument is always first, so
you cannot change that part of the signature. Enter a comma-separated list of variable
names for your input arguments. You can also enter varargin to make any of the
arguments optional. Then click OK.

 Startup Tasks and Input Arguments in App Designer

17-9

After you click OK, App Designer creates a StartupFcn callback that has the function
signature you defined in the dialog box. If your app already has a StartupFcn callback,
then the function signature is updated to include the new input arguments.

After you have created the input arguments and coded the StartupFcn, you can test the
app. Expand the drop-down list from the Run button in the toolstrip. In the second menu
item, specify comma-separated values for each input argument. The app runs after you
enter the values and press Enter.

Note MATLAB might return an error if you click the Run button without entering input
arguments in the drop-down list. The error occurs because the app has required input
arguments that you did not specify.

After successfully running the app with a set of input arguments, the Run button icon
contains a blue circle.

The blue circle indicates that your last set of input values are available for re-running
your app without having to type them again. Up to seven sets of input values are available
to choose from. Click the top half of the Run button to re-run the app with the last set of
values. Or, click the bottom half of the Run button and select one of the previous sets of
values.

17 App Programming

17-10

The Run button also allows you to change the list of arguments in the function signature.
Select Edit App Input Arguments... from the drop-down list in the bottom half of the
Run button.

Alternatively, you can open the same App Input Arguments dialog box by clicking App
Input Arguments in the toolstrip, or by right-clicking the StartupFcn callback in
the Code Browser.

See “Creating Multiwindow Apps in App Designer” on page 17-12 for an example of an
app that uses input arguments.

See Also

Related Examples
• “Write Callbacks in App Designer” on page 17-18
• “Creating Multiwindow Apps in App Designer” on page 17-12

 See Also

17-11

Creating Multiwindow Apps in App Designer
A multiwindow app consists of two or more apps that share data. The way that you share
data between the apps depends on the design. One common design involves two apps: a
main app and a dialog box. Typically, the main app has a button that opens the dialog box.
When the user closes the dialog box, the dialog box sends the user's selections to the
main window, which performs calculations and updates the UI.

These apps share information in different ways at different times:

• When the dialog box opens, the main app passes information to the dialog box by
calling the dialog box app with input arguments.

• When the user clicks the OK button in the dialog box, the dialog box returns
information to the main app by calling a public function in the main app with input
arguments.

Overview of the Process
To create the app described in the preceding section, you must create two separate apps
(a main app and a dialog box app). Then perform these high-level tasks. Each task
involves multiple steps.

• “Send Information to the Dialog Box” on page 17-13 — Write a StartupFcn callback
in the dialog box app that accepts input arguments. One of the input arguments must
be the main app object. Then, in the main app, call the dialog box app with the input
arguments.

17 App Programming

17-12

• “Return Information to the Main App” on page 17-14 — Write a public function in the
main app that updates the UI based on the user's selections in the dialog box. Because
it is a public function, the dialog box can call it and pass values to it.

• “Manage Windows When They Close” on page 17-15 — Write CloseRequest
callbacks in both apps that perform maintenance tasks when the windows close.

To see an implementation of all the steps in this process, see Plotting App That Opens a
Dialog Box on page 17-16.

Send Information to the Dialog Box
Perform these steps to pass values from the main app to the dialog box app.

1 In the dialog box app, define input arguments for the StartupFcn callback, and then
add code to the callback. Open the dialog box app into Code View. In the Editor tab,
click App Input Arguments . In the App Input Arguments dialog box, enter a
comma-separated list of variable names for your input arguments. Designate one of
the inputs as a variable that stores the main app object. Then click OK.

Add code to the StartupFcn callback to store the value of mainapp.

function StartupFcn(app,mainapp,sz,c)
 % Store main app object
 app.CallingApp = mainapp;

 % Process sz and c inputs
 ...
end

 Creating Multiwindow Apps in App Designer

17-13

For a fully coded example of a StartupFcn callback, see Plotting App That Opens a
Dialog Box on page 17-16.

2 Call the dialog box app from within a callback in the main app. Open the main app
into Code View and add a callback function for the Options button. This callback
disables the Options button to prevent users from opening multiple dialog boxes.
Next, it gets the values to pass to the dialog box, and then it calls the dialog box app
with input arguments and an output argument. The output argument is the dialog box
app object.

function OptionsButtonPushed(app,event)
 % Disable Plot Options button while dialog is open
 app.OptionsButton.Enable = 'off';

 % Get szvalue and cvalue
 %

 % Call dialog box with input values
 app.DialogApp = DialogAppExample(app,szvalue,cvalue);
end

3 Define a property in the main app to store the dialog box app. Keeping the main app
open, create a private property called DialogApp. Select Property > Private
Property in the Editor tab. Then, change the property name in the properties
block to DialogApp.

properties (Access = private)
 DialogApp % Dialog box app
end

Return Information to the Main App
Perform these steps to return the user's selections to the main app.

1 Create a public function in the main app that updates the UI. Open the main app into
Code View and select Function > Public Function in the Editor tab.

Change the default function name to the desired name, and add input arguments for
each option you want to pass from the dialog box to the main app. The app argument
must be first, so specify the additional arguments after that argument. Then add code
to the function that processes the inputs and updates the main app.

function updateplot(app,sz,c)
 % Process sz and c

17 App Programming

17-14

 ...
end

For a fully coded example of a public function, see Plotting App That Opens a Dialog
Box on page 17-16.

2 Create a property in the dialog box app to store the main app. Open the dialog box
app into Code View, and create a private property called CallingApp. Select
Property > Private Property in the Editor tab. Then change the property name in
the properties block to CallingApp.

properties (Access = private)
 CallingApp % Main app object
end

3 Call the public function from within a callback in the dialog box app. Keeping the
dialog box app open, add a callback function for the OK button.

In this callback, pass the CallingApp property and the user's selections to the
public function. Then call the delete function to close the dialog box.

function ButtonPushed(app,event)
 % Call main app's public function
 updateplot(app.CallingApp,app.EditField.Value,app.DropDown.Value);

 % Delete the dialog box
 delete(app)
end

Manage Windows When They Close
Both apps must perform certain tasks when the user closes them. Before the dialog box
closes, it must re-enable the Options button in the main app. Before the main app closes,
it must ensure that the dialog box app also closes.

1 Open the dialog box app into Code View, right-click the app.UIFigure object in the
Component Browser, and select Callbacks > Add CloseRequestFcn callback.
Then add code that re-enables the button in the main app and closes the dialog box
app.

function DialogAppCloseRequest(app,event)
 % Enable the Plot Options button in main app
 app.CallingApp.OptionsButton.Enable = 'on';

 Creating Multiwindow Apps in App Designer

17-15

 % Delete the dialog box
 delete(app)
end

2 Open the main app into Code View, right-click the app.UIFigure object in the
Component Browser, and select Callbacks > Add CloseRequestFcn callback.
Then add code that deletes both apps.

function MainAppCloseRequest(app,event)
 % Delete both apps
 delete(app.DialogApp)
 delete(app)
end

Example: Plotting App That Opens a Dialog Box
This app consists of a main plotting app that has a button for selecting options in a dialog
box. The Options button calls the dialog box app with input arguments. In the dialog box,
the callback for the OK button sends the user's selections back to the main app by calling
a public function in the main app.

17 App Programming

17-16

See Also

More About
• “Write Callbacks in App Designer” on page 17-18
• “Startup Tasks and Input Arguments in App Designer” on page 17-8

 See Also

17-17

Write Callbacks in App Designer

Note For information on callbacks in GUIDE, see “Write Callbacks in GUIDE” on page 7-
2. If you are creating an app programmatically, see “Write Callbacks for Apps Created
Programmatically” on page 10-5.

A callback is a function that executes when a user interacts with a UI component in your
app. Most components can have at least one callback. However some components, such
as labels and lamps, do not have callbacks because those components only display
information.

To see the list of callbacks that a component supports, select the component and click the
Callbacks tab in the Component Browser.

Create a Callback Function
There are several ways to create a callback for a UI component. You might use different
approaches depending on what part of App Designer you are working in. Choose the most
convenient approach from the following list.

• Right-click a component in the canvas, Component Browser, or App Layout pane,
and select Callbacks > Add (callback property) callback.

17 App Programming

17-18

• Select the Callbacks tab in the Component Browser. The left side of the Callbacks
tab shows a list of supported callback properties. The text field next to each callback
property allows you to specify a name for the callback function. The down-arrow next
to the text field allows you to select a default name in angle brackets <>. If your app
has existing callbacks, the drop-down includes those callbacks. Select an existing
callback when you want multiple UI components to execute the same code.

 Write Callbacks in App Designer

17-19

• In code Code View, in the Editor tab, click Callbacks . Or in the Code Browser
on the Callbacks tab, click the button.

Specify the following options in the Add Callback Function dialog box:

17 App Programming

17-20

• Component — Specify the UI component that executes the callback.
• Callback — Specify the callback property. The callback property maps the callback

function to a specific interaction. Some components have more than one callback
property available. For example, sliders have two callback properties:
ValueChangedFcn and ValueChangingFcn. The ValueChangedFcn property
executes after the user moves the slider and releases the mouse. The
ValueChangingFcn property for the same component executes repeatedly while
the user moves the slider.

• Name — Specify a name for the callback function. App Designer provides a default
name, but you can change it in the text field. If your app has existing callbacks, the
Name field has a down-arrow next to it, indicating that you can select an existing
callback from a list.

Using Callback Function Input Arguments
All callbacks in App Designer have the following input arguments in the function
signature:

• app — The app object. Use this object to access UI components in the app as well as
other variables stored as properties.

• event — An object that contains specific information about the user's interaction with
the UI component.

The app argument provides the app object to your callback. You can access any
component (and all component-specific properties) within any callback by using this
syntax:

app.Component.Property

For example, this command sets the Value property of a gauge to 50. In this case, the
name of the gauge is PressureGauge.

app.PressureGauge.Value = 50;

The event argument provides an object that has different properties, depending on the
specific callback that is executing. The object properties contain information that is
relevant to the type of interaction that the callback is responding to. For example, the
event argument in a ValueChangingFcn callback of a slider contains a property called
Value. That property stores the slider value as the user moves the thumb (before they
release the mouse). Here is a slider callback function that uses the event argument to
make a gauge track the value of the slider.

 Write Callbacks in App Designer

17-21

function SliderValueChanged(app, event)
 latestvalue = event.Value; % Current slider value
 app.PressureGauge.Value = latestvalue; % Update gauge
end

To learn more about the event argument for a specific component's callback function,
see the property page for that component. Right-click the component, and select Help on
Selection to open the property page. For a list of property pages for all UI components,
see “Designing Apps in App Designer”.

Searching for Callbacks in Your Code
If your app has a lot of callbacks, you can quickly search and navigate to a specific
callback by typing part of the name in the search bar at the top of the Callbacks tab in
the Code Browser. After you begin typing, the Callbacks pane clears, except for the
callbacks that match your search.

Click a search result to scroll the callback into view. Right-clicking a search result and
selecting Go To places your cursor in the callback function.

Deleting Callbacks
Delete a callback by right-clicking the callback in the Callbacks tab of the Code
Browser and selecting Delete from the context menu.

17 App Programming

17-22

Example: App with a Slider Callback
This app contains a gauge that tracks the value of a slider as the user moves the thumb.
The ValueChangingFcn callback for the slider gets the current value of the slider from
the event argument. Then it moves the gauge needle to that value.

 Write Callbacks in App Designer

17-23

See Also

Related Examples
• “Share Data Within App Designer Apps” on page 17-29
• “Use One Callback for Multiple App Designer Components” on page 17-36

17 App Programming

17-24

Create Helper Functions in App Designer
Helper functions are MATLAB functions that you define in your app so that you can call
them at different places in your code. For example, you might want to update a plot after
the user changes a number in an edit field or selects an item in a drop-down list. Creating
a helper function allows you to single-source the common commands and avoid having to
maintain redundant code.

There are two types of helper functions: private functions, which you can call only inside
your app, and public functions, which you can call either inside or outside your app.
Private functions are commonly used in single-window apps, while public functions are
commonly used in multiwindow apps.

Create a Helper Function
Code View provides a few different ways to create a helper function:

• Expand the drop-down menu from the bottom half of the Function button in the
Editor tab. Select Private Function or Public Function.

• Select the Functions tab in the Code Browser, expand the drop-down list on the
 button, and select Private Function or Public Function.

 Create Helper Functions in App Designer

17-25

When you make your selection, App Designer creates a template function and places your
cursor in the body of that function. Then you can update the function name and its
arguments, and add your code to the function body. The app argument is required, but
you can add more arguments after the app argument. For example, this function creates
a surface plot of the peaks function. It accepts an additional argument n for specifying
the number of samples to display in the plot.

methods (Access = private)

 function updateplot(app,n)
 surf(app.UIAxes,peaks(n));
 colormap(app.UIAxes,winter);
 end

end

Call the function from within any callback. For example, this code calls the updateplot
function and specifies 50 as the value for n.

updateplot(app,50);

Managing Helper Functions
Managing helper functions in the Code Browser is similar to managing callbacks. You
can change the name of a helper function by double-clicking the name in the Functions
tab of the Code Browser and typing a new name. App Designer automatically updates all
references to the function when you change its name.

If your app has numerous helper functions, you can quickly search and navigate to a
specific function by typing part of the name in the search bar at the top of the Functions

17 App Programming

17-26

tab. After you begin typing, the Functions tab clears, except for the items that match
your search.

Click a search result to scroll the function into view. Right-clicking a search result and
selecting Go To places your cursor in the function.

To delete a helper function, select its name in the Functions tab and press the Delete
key.

Example: Helper Function that Initializes Plots and Displays
Updated Data
This app shows how to create a helper function that initializes two plots and updates one
of them in a component callback. The app calls the updateplot function at the end of
the StartupFcn callback when the app starts up. The UITableDisplayDataChanged
callback calls the same function to update one of the plots when the user sorts columns or
changes a value in the table.

 Create Helper Functions in App Designer

17-27

See Also

Related Examples
• “Write Callbacks in App Designer” on page 17-18
• “Creating Multiwindow Apps in App Designer” on page 17-12

17 App Programming

17-28

Share Data Within App Designer Apps

Note For information on sharing data in apps you create using GUIDE, see “Share Data
Among Callbacks” on page 11-2.

Using properties is the best way to share data within an app because properties are
accessible to all functions and callbacks in an app. All UI components are properties, so
you can use this syntax to access and update UI components within your callbacks:

app.Component.Property

For example, these commands get and set the Value property of a gauge. In this case,
the name of the gauge is PressureGauge.

x = app.PressureGauge.Value; % Get the gauge value
app.PressureGauge.Value = 50; % Set the gauge value to 50

However, if you want to share an intermediate result, or data that multiple callbacks need
to access, then define a public or private property to store your data. Public properties
are accessible both inside and outside of the app, whereas private properties are only
accessible inside of the app. Code View provides a few different ways to create a
property:

• Expand the drop-down menu from the bottom half of the Properties button in the
Editor tab. Select Private Property or Public Property.

 Share Data Within App Designer Apps

17-29

• Click on the Properties tab in the Code Browser, expand the drop-down list on the
 button, and select Private Property or Public Property.

After you select an option to create a property, App Designer adds a property definition
and a comment to a properties block.

properties (Access = public)
 Property % Description
end

The properties block is editable, so you can change the name of the property and edit
the comment to describe the property. For example, this property stores a value for
average cost:

properties (Access = public)
 X % Average cost
end

If your code needs to access a property value when the app starts, you can initialize its
value in the properties block or in the StartupFcn callback.

properties (Access = public)
 X = 5; % Average cost
end

Elsewhere in your code, use dot notation to get or set the value of a property:

y = app.X % Get the value of X
app.X = 5; % Set the value of X

17 App Programming

17-30

Example: Share Plot Data and a Drop-Down List Selection
This app shows how to share data in a private property and a drop-down list. It has a
private property called Z that stores plot data. The callback function for the edit field
updates Z when the user changes the sample size. The callback function for the Update
Plot button gets the value of Z and the colormap selection to update the plot.

See Also

Related Examples
• “Write Callbacks in App Designer” on page 17-18

 See Also

17-31

• “Creating Multiwindow Apps in App Designer” on page 17-12

17 App Programming

17-32

Compatibility Between Different Releases of App
Designer

Starting in R2018a, the apps you save in App Designer have a new format. This new file
format might impact your ability to edit newer apps in previous releases, but it has no
impact on your ability to run them in previous releases.

If you try to edit an app, created in R2018a or later, in an earlier release of App Designer,
the new format is not recognized after saving your changes. You see a message such as
this.

To enable editing of newer apps in a previous release, save the app in the release-specific
format. Select Save > Save Copy As from any of the tabs in the toolstrip.

In the Save Copy As window, select a type from the Save as Type drop-down list.

 Compatibility Between Different Releases of App Designer

17-33

Save Copy As Versus Save As
The Save Copy As and Save As options serve different purposes, and their behavior is
also different.

• To save your app in a format that can be edited in earlier releases, use Save Copy As.
When you use this option, App Designer saves the copy of the app in the specified
folder, but it does not replace the app in your current session.

• To save a copy of your app that is editable only with the current release, use Save As.
When you use this option, App Designer saves the copy of the app in the specified
folder and replaces the app in your current session.

Opening Apps for Editing in a Newer Release
If you open an app for editing that was created in a previous release, App Designer
updates the app, and displays a message such as this one.

17 App Programming

17-34

See Also
appdesigner

 See Also

17-35

Use One Callback for Multiple App Designer Components
Sharing callbacks between components is useful when you want to offer multiple ways of
doing something in your app. For example, you might want your app respond the same
way when the user clicks a button or presses the Enter key in an edit field.

Example of a Shared Callback
This example shows how to create an app containing two UI components that share a
callback. The app displays a contour plot with the specified number of levels. When the
user changes the value in the edit field, they can press Enter or click the Update Plot
button to update the plot.

1 In App Designer, drag an Axes component from the Component Library onto the
canvas. Then make these changes:

17 App Programming

17-36

• Double-click the title, and change it to Select Contours of Peaks
Function.

• Double-click the X and Y axis labels, and press the Delete key to remove them.
2 Drag an Edit Field (Numeric) component below the axes on the canvas. Then make

these changes:

• Double-click the label next to the edit field and change it to Levels:.
• Double-click the edit field and change the default value to 20.

3 Drag a Button component next to the edit field on the canvas. Then double-click its
label and change it to Update Plot.

4 Add a callback function that executes when the user clicks the button. Right-click the
Update Plot button and select Callbacks > Add ButtonPushedFcn callback.

5 App Designer switches to the Code View. Paste this code into the body of the
UpdatePlotButtonPushed callback:

Z = peaks(100);
nlevels = app.LevelsEditField.Value;
contour(app.UIAxes,Z,nlevels);

6 Next, share the callback with the edit field. In the Component Browser, right-click
the app.LevelsEditField component and select Callbacks > Select existing
callback.... When the Select Callback Function dialog box displays, select
UpdatePlotButtonPushed from the Name drop-down menu.

Sharing this callback allows the user to update the plot after changing the value in
the edit field and pressing Enter. Alternatively, they can change the value and press
the Update Plot button.

 Use One Callback for Multiple App Designer Components

17-37

7 Next, set the axes aspect ratio and limits. In the Component Browser, select the
app.UIAxes component. Then, make the following changes in the Inspector tab:

• Set PlotBoxAspectRatio to 1,1,1.
• Set XLim and YLim to 0,100.

8 Click Run to save and run the app.

Change or Disconnect a Callback
To assign a different callback to a component, select the component in the Component
Browser. Then click the Callbacks tab and select a different callback from the drop-
down menu. The drop-down displays only the existing callbacks.

17 App Programming

17-38

To disconnect a callback that is shared with a component, select the component in the
Component Browser. Then click the Callbacks tab and select <no callback> from the
drop-down menu. Selecting this option only disconnects the callback from the component.
It does not delete the function definition from your code, nor does it disconnect the
callback from any other components.

After you disconnect a callback, you can create a new callback for the component or leave
the component without a callback function.

See Also

Related Examples
• “Write Callbacks in App Designer” on page 17-18

 See Also

17-39

App Designer Examples

18

App that Calculates and Plots Data Based on Numerical
Input

This app shows how to use numeric edit fields to create a simple mortgage amortization
calculator. It includes the following components to collect user input, calculate monthly
payments, and plot the principal and interest amounts over time:

• Numeric edit fields — allow users to enter values for the loan amount, interest rate,
and loan period. MATLAB® automatically checks to make sure the values are numeric
and within the range specified by the app. A fourth numeric edit field displays the
resulting monthly payment amount based on the inputs.

• Push button — executes a callback function to calculate the monthly payment value.
• Axes — used to plot the principal and interest amounts versus mortgage installment.

See Also
UIAxes

18 App Designer Examples

18-2

Related Examples
• “Write Callbacks in App Designer” on page 17-18

 See Also

18-3

App with Auto-Reflow that Updates Plot Based on User
Selections

This app shows how to define controls and tabs within the panels of an app with auto-
reflow. The controls are in an anchored panel on the left. The right panel that reflows
contains two tabs. One tab displays a chart and user interface components for adjusting
the chart. The other tab contains a table with the data used to make the chart. User
selections update both the plot and the table. The app responds to resizing by
automatically growing, shrinking, and reflowing the app content.

The app includes these components:

• Check boxes — used to update the plot and table when the user selects or clears a
check box.

• Switch — used to toggle the data that is visualized in the chart
• Button group containing radio buttons — used to manage exclusive selection of radio

buttons. When the user selects a radio button, the button group executes a callback
function to update the plot with the appropriate data.

• Slider — used to adjust histogram bin width. This slider only appears when the
Histogram plotting option is selected in the button group.

• Table — used to view the data associated with the chart.

18 App Designer Examples

18-4

See Also
Table | UIAxes

Related Examples
• “Write Callbacks in App Designer” on page 17-18

 See Also

18-5

App that Uses Grid Layout to Manage Component
Positions and Resizing

This app shows how to use a grid layout manager to control the alignment and resizing of
knobs when the app is resized. The app also uses the following components to gather user
input and plot the resulting wave form:

• Numeric edit fields — allow users to enter the pulse frequency and length. MATLAB®
automatically checks to make sure the values are numeric and within the range
specified by the app.

• Switches — allow users to control automatic plot updates and toggle between plots in
the time and frequency domains.

• Drop-down menu — allows users to select from a list of pulse shapes, such as
Gaussian, sinc, and square.

• Knobs — allow users to modify the pulse by specifying a window function, modulating
the signal, or applying other enhancements.

See Also
UIAxes

18 App Designer Examples

18-6

Related Examples
• “Write Callbacks in App Designer” on page 17-18

 See Also

18-7

App That Displays Data in a Hierarchy Using Tree
This app shows how to add a tree to an App Designer app. The app selects data from
patients.xls and displays it in a hierarchy using a tree. The tree contains three nodes
that display hospital names. Each hospital node contains nodes that display patient
names. When the user clicks a patient name in the tree, the Patient Information panel
displays data such as age, gender, and health status. The app stores changes to the data
in the table variable.

In addition to the tree and Patient Information panel, the app also contains the
following UI components:

• Read-only text field — Used to display the patient’s name
• Numeric edit field — Used to display and accept changes to the patient’s age
• Drop-down list — Used to display and accept changes to the patient’s gender and

health status
• Check box — Used to display and accept changes to the patient’s smoking history

18 App Designer Examples

18-8

See Also
readtable | table | uitree | uitreenode

Related Examples
• “Add UI Components to App Designer Programmatically” on page 15-18

 See Also

18-9

Create App that Uses Multiple Axes to Display Results of
Image Analysis

This app shows how to configure multiple axes components in App Designer. The app
displays an image in one axes component, and displays histograms of the red, green, and
blue pixels in the other three.

This example also demonstrates the following app building tasks:

• Managing multiple axes
• Reading and displaying images
• Browsing the user’s file system using the uigetfile function
• Displaying an in-app alert for invalid input (in this case, an unsupported image file)
• Writing a StartupFcn callback to initialize the app with a default image

18 App Designer Examples

18-10

See Also
UIAxes | imagesc | imread | uialert

 See Also

18-11

Create Polar Axes Programmatically in an App
This app shows how to display a plot by creating the axes programmatically before calling
a plotting function. In this case, the app plots a polar equation using the polaraxes and
polarplot functions. When the user changes the value of a or b, or when they select a
different line color, the plot updates to reflect their changes.

This example also demonstrates the following app building concepts:

• Creating different types of axes programmatically to display plots that uiaxes does
not support

• Calling a plotting function in App Designer
• Sharing a callback with multiple components
• Displaying Unicode® characters in a label

18 App Designer Examples

18-12

See Also
polaraxes | polarplot

Related Examples
• “Displaying Graphics in App Designer” on page 14-10

 See Also

18-13

Create App with a Table That Can Be Sorted and Edited
Interactively

This app shows how to display data in a Table UI component. The app loads a
spreadsheet into a table array when the app starts up. Then it displays and plots a subset
of the data from the spreadsheet. One of the plots updates when the user edits values or
sorts columns in the Table UI component at run time.

This example demonstrates the following app building tasks:

• Displaying the contents of a table array in a Table UI component
• Enabling some of the interactive features of a Table UI component

18 App Designer Examples

18-14

See Also
readtable | table

Related Examples
• “Table Array Data Types in App Designer Apps” on page 15-11

 See Also

18-15

Create App with Timer Object Configured
Programmatically

This app shows how to create a timer object in App Designer that executes a function at
regular time intervals. In this case, the app queries the available system memory every
second and plots the percentage of memory that the system is using.

This example also demonstrates the following app building tasks:

• Writing a callback for an object created programmatically (in this case, the timer
object)

• Configuring a timer object to execute its callback at regular intervals
• Starting the timer when the user clicks the Start button
• Stopping the timer when the user clicks the Stop button
• Deleting the timer when the app closes

18 App Designer Examples

18-16

See Also
UIAxes | memory | timer

 See Also

18-17

Create App with Timer Object that Queries Website Data
This app shows how to create a timer object in App Designer that executes a function at
regular time intervals. In this case, the app queries the wind speed from a web site every
five seconds and plots the returned value.

This example also demonstrates the following app building tasks:

• Writing a callback for an object created programmatically (in this case, the timer
object)

• Configuring a timer object to execute its callback at regular intervals
• Starting the timer when the user clicks the Start button
• Stopping the timer when the user clicks the Stop button
• Deleting the timer when the app closes

18 App Designer Examples

18-18

See Also
UIAxes | timer | webread

 See Also

18-19

Share Data in Multiwindow Apps
This example shows how pass data from one app to another. This multiwindow app
consists of a main app that calls a dialog box app with input arguments. The dialog box
displays a set of options for modifying aspects of the main app. When the user closes it,
the dialog box sends their selections back to the main app.

This example demonstrates the following app building tasks:

• Calling an app with input arguments
• Calling an app with a return argument that is the app object
• Passing values to an app by calling a public function in the app
• Writing CloseRequestFcn callbacks to perform maintenance tasks when each app

closes

18 App Designer Examples

18-20

See Also

Related Examples
• “Creating Multiwindow Apps in App Designer” on page 17-12
• “Startup Tasks and Input Arguments in App Designer” on page 17-8
• “Create Helper Functions in App Designer” on page 17-25

 See Also

18-21

Keyboard Shortcuts

19

App Designer Keyboard Shortcuts
In this section...
“Shortcuts Available Throughout App Designer” on page 19-2
“Component Browser Shortcuts” on page 19-2
“Design View Shortcuts” on page 19-3
“Code View Shortcuts” on page 19-8

Shortcuts Available Throughout App Designer
Action Key or Keys
Run the active app. F5
Save the active app. Ctrl+S
Save the active app, allowing you to specify
a new file name. (Save as)

Ctrl+Shift+S

Open a previously saved app. Ctrl+O
Redo an undone modification, returning it
to the changed state.

Ctrl+Y or, in the design area only, Ctrl
+Shift+Z

Undo a modification, returning it to the
previous state.

Ctrl+Z

Alternate between design and code view. Shift + F7

If debugging is in progress, this shortcut
does not change the view.

Quit App Designer. Ctrl+Q

Component Browser Shortcuts
These shortcuts are available in the Component Browser, in both code view and design
view

19 Keyboard Shortcuts

19-2

Action Key or Keys
Select multiple components. Hold down the Ctrl key as you click each

component that you want to include in the
multiselection.

Deselect a component from multiselection. Hold down the Ctrl key as you click each
component that you want to remove from a
multiselection.

Navigate from clicked component to the
previous or next component listed in the
code browser.

Up Arrow and Down Arrow

Edit code name of clicked component in the
code browser.

F2 on Windows and Linux

Enter on Mac

Design View Shortcuts
These shortcuts are available from the App Designer design view only.

• “Add Component Shortcuts” on page 19-4
• “Component, Group, and Text Selection Shortcuts” on page 19-4
• “Group and Ungroup Components Shortcuts” on page 19-4
• “Component and Group Move Shortcuts” on page 19-5
• “Component Resize Shortcuts” on page 19-5
• “Component Copy, Duplicate, and Delete Shortcuts” on page 19-6
• “Design Area Grid Shortcuts” on page 19-6
• “Component Alignment Shortcuts” on page 19-6
• “Change Font Characteristics Shortcuts” on page 19-7
• “Menu Component Shortcuts” on page 19-8
• “Tab Component Shortcuts” on page 19-8

 App Designer Keyboard Shortcuts

19-3

Add Component Shortcuts

Action Shortcut
Add component and associated label (if any)
to canvas.

Click the component and hold down the
mouse key to drag the component from the
Component Library on the left into the
design area.

Add component only to canvas. Hold down the Ctrl key, click the
component, and drag it from the
Component Library on the left into the
design area.

Component, Group, and Text Selection Shortcuts

Action Key or Keys
Move the selection to the next component,
or container in the design area tab key
navigation sequence.

Tab

Move the selection to the previous
component or container in the design area
tab key navigation sequence.

Shift+Tab

Selects all components on the canvas, with
one exception. If any of the components are
grouped, the group is selected, not the
individual components within the grouping.

Ctrl+A

Clear a component selection. Press again to
reselect the component.

Shift+Click or Ctrl+Click

In the property editor or in-place editing,
select all text in a text input field.

Ctrl+A

Select group containing a component. Alt + Click a component

Group and Ungroup Components Shortcuts

Select the components that you want to group, and then press Ctrl + G. All components
to be grouped must have the same parent component.

19 Keyboard Shortcuts

19-4

Action Key or Keys
Group selected components. Ctrl+G
Ungroup components in selected group. Ctrl+Shift+G

Component and Group Move Shortcuts

This table summarizes the keyboard shortcuts for moving selected components and
groups.

Action Key or Keys
Move down 1 pixel. Down Arrow
Move left 1 pixel. Left Arrow
Move right 1 pixel. Right Arrow
Move up 1 pixel. Up Arrow
Move down 10 pixels. Shift+Down Arrow
Move left 10 pixels. Shift+Left Arrow
Move right 10 pixels. Shift+Right Arrow
Move up 10 pixels. Shift+Up Arrow
Cancel an in-progress operation. Escape

Component Resize Shortcuts

Action Key
Resize component while maintaining aspect
ratio.

Press and hold down the Shift key before
you begin to drag the component resize
handle.

Resize component while keeping center
location unchanged.

Press and hold down the Ctrl key before
you begin to drag the component resize
handle.

Resize component while maintaining aspect
ratio and keeping center location
unchanged.

Press and hold down the Ctrl and Shift
keys before you begin to drag the
component resize handle.

Cancel an in-progress resize operation. Escape

 App Designer Keyboard Shortcuts

19-5

Component Copy, Duplicate, and Delete Shortcuts

Action Key or Keys
Copy selected components and groups to
the clipboard.

Ctrl+C

Duplicate the selected components and
groups (without copying them to the
clipboard).

Ctrl+D, or hold down the Ctrl key and
drag the component.

Cut the selected components and groups
from the design area onto the clipboard.

Ctrl+X

Delete the selected components and groups
from the design area.

Backspace or Delete

Paste components and groups from the
clipboard into the design area or a
container component (panel, tab, or button
group). Radio buttons and toggle buttons
can only be pasted into radio button groups
or toggle button groups, respectively.

Ctrl+V

Design Area Grid Shortcuts

Action Keys
Toggle grid on and off. Alt+G
Toggle snap to grid on and off. Alt+P
Increase grid interval by 5 pixels. Alt+Page Up
Decrease grid interval by 5 pixels. Alt+Page Down

Component Alignment Shortcuts

Action Keys
Align selected components and groups on
their left edges.

Ctrl+Alt+1

Align selected components and groups on
their horizontal centers.

Ctrl+Alt+2

19 Keyboard Shortcuts

19-6

Action Keys
Align selected components and groups on
their right edges.

Ctrl+Alt+3

Align selected components and groups on
their top edges.

Ctrl+Alt+4

Align selected components and groups on
their vertical middle.

Ctrl+Alt+5

Align selected components and groups on
their bottom edges.

Ctrl+Alt+6

Change Font Characteristics Shortcuts

Action Key or Keys
Toggle the font weight of selected
components and their children between
normal and bold.

Ctrl+B

Toggle the font angle of selected
components and their children between
normal and italic.

Ctrl+I

Decrease the value of the FontSize
property of the selected components and
their children by one step.

Font size steps are: 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 26, 28, 36, 48, 72.

Ctrl+[

Increase the value of the FontSize
property of the selected components and
their children by one step.

Font size steps are: 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 26, 28, 36, 48, 72.

Ctrl+]

 App Designer Keyboard Shortcuts

19-7

Menu Component Shortcuts

Action Key or Keys
Add a menu item below the current item.
The new menu item appears at the end of
the list.

Enter

Add an item to the right of selected item. Shift+Enter
Delete the current item. Delete
Commit text changes and navigate to the
next item.

Any Arrow key

Select the first or last item at the level of
the selected item.

Home
End

Move the selected child menu item higher
or lower in the list.

Ctrl+Shift+Up Arrow
Ctrl+Shift+Down Arrow

Move the selected top-level menu item to
the left or right.

Ctrl+Shift+Left Arrow
Ctrl+Shift+Right Arrow

Move the selected item to the beginning or
end of the list.

Ctrl+Shift+Home
Ctrl+Shift+End

Tab Component Shortcuts

Action Key or Keys
Move the selected tab to the left or right. Ctrl+Shift+Left Arrow

Ctrl+Shift+Right Arrow
Move the selected tab to the beginning or
end.

Ctrl+Shift+Home
Ctrl+Shift+End

Code View Shortcuts
These shortcuts are available only from the App Designer code view, within the editor.

• “Code Indenting Shortcuts” on page 19-9
• “Cut, Copy, and Paste Code Shortcuts” on page 19-9
• “Find Code Shortcuts” on page 19-9
• “Code Browser Shortcuts” on page 19-9

19 Keyboard Shortcuts

19-8

• “Other App Designer Code Editor Shortcuts” on page 19-10

Code Indenting Shortcuts

Action Key or Keys
Smart indent selected code. Ctrl+I
Increase indent on current line of code or
currently selected code.

Ctrl+]

Decrease indent on current line of code or
currently selected code.

Ctrl+[

Cut, Copy, and Paste Code Shortcuts

Action Key or Keys
Cut selected code. Ctrl+X
Copy selected code. Ctrl+C
Paste selected code. Ctrl+V

Find Code Shortcuts

Action Key or Keys
Find. Ctrl+F
Find next. F3
Find previous. Shift+F3
Find selection. Ctrl+F3

Code Browser Shortcuts

Action Key or Keys
Delete callback. Delete
Rename callback. F2
Bring callback to focus and insert cursor. Ctrl+D

 App Designer Keyboard Shortcuts

19-9

Other App Designer Code Editor Shortcuts

Action Key or Keys
Add comment to selected code. Ctrl+R
Evaluate selection. F9
Open selection. Ctrl+D
Go to specified line number. Ctrl+G
Set or clear breakpoint. F12

19 Keyboard Shortcuts

19-10

App Packaging

11

Packaging GUIs as Apps

• “Apps Overview” on page 20-2
• “Package Apps From the MATLAB Toolstrip” on page 20-5
• “Package Apps in App Designer” on page 20-8
• “Modify Apps” on page 20-11
• “Ways to Share Apps” on page 20-13
• “MATLAB App Installer File — mlappinstall” on page 20-17
• “Dependency Analysis” on page 20-18

20

Apps Overview
What Is an App?
A MATLAB app is a self-contained MATLAB program with a user interface that automates
a task or calculation. All the operations required to complete the task — getting data into
the app, performing calculations on the data, and getting results are performed within the
app. Apps are included in many MATLAB products. In addition, you can design your own
apps using the App Designer development environment. The Apps tab on the MATLAB
Toolstrip displays all currently installed apps when you click the down arrow on the far
right of the toolstrip.

Note You cannot run MATLAB apps using the MATLAB Runtime. Apps are for MATLAB to
MATLAB deployment. To run code using the MATLAB Runtime, the code must be
packaged using MATLAB Compiler.

Where to Get Apps
There are three key ways to get apps:

• MATLAB Products

Many MATLAB products, such as Curve Fitting Toolbox™, Signal Processing
Toolbox™, and Control System Toolbox™ include apps. In the apps gallery, you can see
the apps that come with your installed products.

• Create Your Own

App Designer is the recommended environment for building apps in MATLAB. You can
create your own MATLAB app and package it into a single file that you can distribute
to others. The apps packaging tool automatically finds and includes all the files needed
for your app. It also identifies any MATLAB products required to run your app.

20 Packaging GUIs as Apps

20-2

You can share your app directly with other users, or share it with the MATLAB user
community by uploading it to the MATLAB File Exchange. When others install your
app, they do not need to be concerned with the MATLAB search path or other
installation details.

Watch this video for an introduction to creating apps:

Packaging and Installing MATLAB Apps (2 min, 58 sec)
• Add-Ons

Apps (and other files) uploaded to the MATLAB File Exchange are available from
within MATLAB:

1 On the Home tab, in the Environment section, click the Add-Ons arrow button.
2 Click Get Add-Ons.
3 Search for apps by name or descriptive text.

Why Create an App?
When you create an app package, MATLAB creates a single app installation file
(.mlappinstall) that enables you and others to install your app easily.

In particular, when you package an app, the app packaging tool:

• Performs a dependency analysis that helps you find and add the files your app
requires.

• Reminds you to add shared resources and helper files.
• Stores information you provide about your app with the app package. This information

includes a description, a list of additional MATLAB products required by your app, and
a list of supported platforms.

• Automates app updates (versioning).

In addition, when others install your app:

• It is a one-click installation.
• Users do not need to manage the MATLAB search path or other installation details.
• Your app appears alongside MATLAB toolbox apps in the apps gallery.

 Apps Overview

20-3

https://www.mathworks.com/videos/packaging-and-installing-matlab-apps-101563.html

Best Practices and Requirements for Creating an App
Best practices:

• Write the app as an interactive application with a user interface written in the
MATLAB language.

• All interaction with the app is through the user interface.
• Make the app reusable. Do not make it necessary for a user restart the app to use
different data or inputs with it.

• Ensure the main function returns the handle of the main figure. (The main function
created by GUIDE returns the figure handle by default.)

Although not a requirement, doing so enables MATLAB to remove the app files from
the search path when users exit the app.

• If you want to share your app on MATLAB File Exchange, you must release it under a
BSD license. In addition, there are restrictions on the use of binary files such as MEX-
files, p-coded files, or DLLs.

Requirements:

• The main file must be a function (not a script).
• Because you invoke apps by clicking an icon in the apps gallery, the main function

cannot have any required input arguments. However, you can define optional input
arguments. One way to define optional input arguments is by using varargin.

See Also

Related Examples
• “Package Apps From the MATLAB Toolstrip” on page 20-5
• “Modify Apps” on page 20-11
• “Ways to Share Apps” on page 20-13

20 Packaging GUIs as Apps

20-4

Package Apps From the MATLAB Toolstrip
You can package any MATLAB app you create into a single file that can be easily shared
with others. When you package an app, MATLAB creates a single app installation file
(.mlappinstall). The installation file enables you and others to install your app and
access it from the apps gallery without concern for installation details or the MATLAB
path.

Note As you enter information in the Package Apps dialog box, MATLAB creates and
saves a .prj file continuously. A .prj file contains information about your app, such as
included files and a description. Therefore, if you exit the dialog box before clicking the
Package button, the .prj file remains, even though a .mlappinstall file is not
created. The .prj file enables you to quit and resume the app creation process where
you left off.

To create an app installation file:

1 On the desktop Toolstrip, on the Home tab, click the Add-Ons down-arrow.
2 Click Package App.
3 In the Package App dialog box, click Add main file and specify the file that you use

to run the app you created.

The main file must be callable with no input and must be a function or method, not a
script. MATLAB analyzes the main file to determine if there are other files used in the
app. For more information, see “Dependency Analysis” on page 20-18.

Tip The main file must return the figure handle of your app for MATLAB to remove
your app files from the search path when users exit the app. For more information,
see “What Is the MATLAB Search Path?”

(Functions created by GUIDE return the figure handle.)
4 If your app requires additional files that are not listed under Files included through

analysis, add them by clicking Add files/folders.

You can include external interfaces, such as MEX-files, ActiveX, or Java® in
the .mlappinstall file, although doing so can restrict the systems on which your
app can run.

 Package Apps From the MATLAB Toolstrip

20-5

5 Describe your app.

a In the App Name field, type an app name.

If you install the app, MATLAB uses the name for the .mlappinstall file and to
label your app in the apps gallery.

b Optionally, specify an app icon.

Click the icon to the left of the App Name field to select an icon for your app or
to specify a custom icon. MATLAB automatically scales the icon for use in the
Install dialog box, App gallery, and quick access toolbar.

c Optionally, select a previously saved screenshot to represent your app.
d Optionally, specify author information.
e In the Description field, describe your app so others can decide if they want to

install it.
f Identify the products on which your app depends.

Click the plus button on the right side of the Products field, select the products
on which your app depends, and then click Apply Changes. Keep in mind that
your users must have all of the dependent products installed on their systems.

After you create the package, when you select a .mlappinstall file in the Current
Folder browser, MATLAB displays the information you provided (except your email
address and company name) in the Current Folder browser Details panel. If you
share your app in the MATLAB Central File Exchange, the same information also
displays there. The screenshot you select, if any, represents your app in File
Exchange.

6 Click Package.

As part of the app packaging process, MATLAB creates a .prj file that contains
information about your app, such as included files and a description. The .prj file
enables you to update the files in your app without requiring you to respecify
descriptive information about the app.

7 In the Build dialog box, note the location of the installation file (.mlappinstall),
and then click Close.

For information on installing the app, see “Install Add-Ons Manually”.

20 Packaging GUIs as Apps

20-6

See Also

Related Examples
• “Modify Apps” on page 20-11
• “Ways to Share Apps” on page 20-13
• “MATLAB App Installer File — mlappinstall” on page 20-17
• “Dependency Analysis” on page 20-18

 See Also

20-7

Package Apps in App Designer
After creating an app in App Designer, you can package it into a single installer file that
you can easily share with others. The underlying functionality for packaging apps in App
Designer is the same as the functionality that underlies the Add-Ons > Package App
option in the MATLAB Toolstrip.

1 In App Designer, select the Designer tab. Then select Share > MATLAB App.

MATLAB opens the Package App dialog box.
2 The Package App dialog box has the following items pre-populated:

• The application name matches the title assigned to the figure in App Designer.
• The Main file is the MLAPP file you currently have selected for editing.
• The Output folder is the folder that contains the MLAPP file.
• The files listed under Files included through analysis include any files MATLAB

detected as dependent files. You can add additional files by clicking Add files/
folders under Shared resources and helper files.

20 Packaging GUIs as Apps

20-8

3 Specify details to display in the apps gallery. Enter the appropriate information in
these fields: Author Name, Email, Company, Summary, and Description.

4 In the Products section, select the products that are required to run the app. Keep in
mind that your users must have all of the dependent products installed on their
systems.

5 Click Select screenshot to specify an icon to display in the apps gallery.
6 Click Package to create the .mlappinstall file to share with your users. Later, if

you click the Package App button in the App Designer Toolstrip again, the Package
App dialog box opens the most recently modified .prj file for the MLAPP file.

See Also

Related Examples
• “Package Apps From the MATLAB Toolstrip” on page 20-5

 See Also

20-9

• “Ways to Share Apps” on page 20-13
• “MATLAB App Installer File — mlappinstall” on page 20-17
• “Dependency Analysis” on page 20-18

20 Packaging GUIs as Apps

20-10

Modify Apps
When you update the files included in a .mlappinstall file, you recreate and overwrite
the original app. You cannot maintain two versions of the same app.

To update files in an app you created:

1 In the Current Folder browser, navigate to the folder containing the project file
(.prj) that MATLAB created when you packaged the app.

By default, MATLAB writes the .prj file to the folder that was the current folder
when you packaged the app.

2 From the Current Folder browser, double-click the project file for your app package,
appname.prj

The Package App dialog box opens.
3 Adjust the information in the dialog box to reflect your changes by doing any or all of

the following:

• If you made code changes, add the main file again, and refresh the files included
through analysis.

• If your code calls additional files that are not included through analysis, add them.
• If you want anyone who installs your app over a previous installation to be

informed that the content is different, change the version.

Version numbers must be a combination of integers and periods, and can include
up to three periods — 2.3.5.2, for example.

Anyone who attempts to install a revision of your app over another version is
notified that the version number is changed. The user can continue or cancel the
installation.

• If your changes introduce different product dependencies, adjust the product list
in the Products field. Keep in mind that your users must have all of the
dependent products installed on their systems.

4 Click Package.

 Modify Apps

20-11

See Also

Related Examples
• “Ways to Share Apps” on page 20-13
• “MATLAB App Installer File — mlappinstall” on page 20-17
• “Dependency Analysis” on page 20-18

20 Packaging GUIs as Apps

20-12

Ways to Share Apps
There are several ways to share your apps.

• “Share MATLAB Files Directly” on page 20-13 — This approach is the simplest way to
share an app, but your users must have MATLAB installed on their systems, as well as
other MathWorks products that your app depends on. They must also be familiar with
executing commands in the MATLAB Command Window and know how to manage the
MATLAB path.

• “Package Your App” on page 20-14 — This approach uses the app packaging tool
provided with MATLAB. When your users install a packaged app, the app appears in
the Apps tab in the MATLAB Toolstrip. This approach is useful for sharing apps with
larger audiences, or when your users are less familiar with executing commands in the
MATLAB Command Window or managing the MATLAB path. As in the case of sharing
MATLAB files directly, your users must have MATLAB installed on their systems (as
well as other MathWorks products that your app depends on).

• “Create a Deployed Web App” on page 20-15 — This approach lets you create apps
that users within an organization can run in their web browsers. To deploy a web app,
you must have MATLAB Compiler installed on your system. Your users must have a
web browser installed that can access your intranet, but they do not need to have
MATLAB installed.

• “Create a Standalone Desktop Application” on page 20-16 — This approach lets you
share desktop apps with users that do not have MATLAB installed on their systems. To
create the standalone application, you must have MATLAB Compiler installed on your
system. To run the application, your users must have MATLAB Runtime installed on
their systems. For more information, see https://www.mathworks.com/products/
compiler/matlab-runtime.html.

Share MATLAB Files Directly
If you created your app in GUIDE, share the .fig file, the .m file, and all other dependent
files with your users.

If you created your app programmatically, share all .m files and other dependent files with
your users.

If you created your app in App Designer, share the .mlapp file and all other dependent
files with your users. To provide a richer file browsing experience for your users, provide
a name, summary, and description by clicking App Details in the Designer tab of the

 Ways to Share Apps

20-13

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

App Designer toolstrip. The App Details dialog box also provides an option for specifying
a screen shot. If you do not specify a screen shot, App Designer captures and updates a
screen shot automatically when you run the app.

MATLAB provides your app details to some operating systems for display in their file
browsers. Specifying apps details also makes it easier to package and compile your apps.
The .mlapp file provides those details automatically to those interfaces.

Package Your App
To package your app and make it accessible in the MATLAB Apps tab, create
an .mlappinstall file by following the steps in “Package Apps in App Designer” on
page 20-8 or “Package Apps From the MATLAB Toolstrip” on page 20-5. The
resulting .mlappinstall file includes all dependent files.

20 Packaging GUIs as Apps

20-14

You can share the .mlappinstall file directly with your users. To install it, they must
double-click the .mlappinstall file in the MATLAB Current Folder browser.

Alternatively, you can share your app as an add-on by uploading the .mlappinstall file
to MATLAB Central File Exchange. Your users can find and install your add-on from the
MATLAB Toolstrip by performing these steps:

1 In the MATLAB Toolstrip, on the Home tab, in the Environment section, click the

Add-Ons icon.
2 Find the add-on by browsing through available categories on the left side of the Add-

On Explorer window. Use the search bar to search for an add-on using a keyword.
3 Click the add-on to open its detailed information page.
4 On the information page, click Add to install the add-on.

Note Although .mlappinstall files can contain any files you specify, MATLAB Central
File Exchange places additional limitations on submissions. Your app cannot be submitted
to File Exchange when it contains any of the following files:

• MEX-files
• Other binary executable files, such as DLLs or ActiveX controls. (Data and image files

are typically acceptable.)

Create a Deployed Web App
Web apps are MATLAB apps that can run in a web browser. You create an app in App
Designer, package it using the Web App Compiler, and then use the MATLAB Web Apps
Manager to serve the app in a web browser. Then you can share the app within your
organization by sharing a URL. Creating deployed web apps requires MATLAB Compiler,
and only App Designer apps can be deployed as web apps.

Once you have MATLAB Compiler on your system, you can open the Web App Compiler
from within App Designer by clicking Share in the Designer tab and selecting Web
App. For more information, see “Web Apps” (MATLAB Compiler).

 Ways to Share Apps

20-15

https://www.mathworks.com/matlabcentral/fileexchange/

Create a Standalone Desktop Application
Creating a standalone desktop application lets you share an app with users who do not
have MATLAB on their systems. However, you must have MATLAB Compiler installed on
your system to create the standalone application. Your users must have MATLAB Runtime
on their systems to run the app.

Once you have MATLAB Compiler on your system, you can open the Application Compiler
from within App Designer by clicking Share in the Designer tab and selecting
Standalone Desktop App.

If you used GUIDE or created your app programmatically, you can open the Application
Compiler from the MATLAB Toolstrip, on the Apps tab, by clicking the Application
Compiler icon.

See “Create Standalone Application from MATLAB” (MATLAB Compiler) for instructions
on using the Application Compiler.

See Also

Related Examples
• “Apps Overview” on page 20-2
• “Ways to Build Apps” on page 1-2

20 Packaging GUIs as Apps

20-16

MATLAB App Installer File — mlappinstall
A MATLAB app installer file, .mlappinstall, is an archive file for sharing an app you
created using MATLAB. A single app installer file contains everything necessary to install
and run an app: the source code, supporting data, information (such as product
dependencies), and the app icon.

An .mlappinstall file is a compressed package that conforms to the Open Packaging
Conventions (OPC) interoperability standard. You can search for and
install .mlappinstall files using your operating system file browser. When you select
an .mlappinstall file in Windows Explorer or Quick Look (Mac OS), the browser
displays properties for the file, such as Authors and Release. Use these properties to
search for .mlappinstall files. Use the Tags property to add custom searchable text to
the file.

See Also

Related Examples
• “Package Apps From the MATLAB Toolstrip” on page 20-5

 MATLAB App Installer File — mlappinstall

20-17

Dependency Analysis
When you create an app package, MATLAB analyzes your main file and attempts to
include all the files that your app uses. However, MATLAB does not guarantee to find
every dependent file. It does not find files for functions that your code references as
character vectors (for instance, as arguments to eval, feval, and callback functions). In
addition, MATLAB can include some files that the main file never calls when it runs.

Dependency analysis searches for the following types of files:

• Executable files, such as MATLAB program files, P-files, Fig-files, and MEX-files.
• Files that your app accesses by calling standard and low-level I/O functions. These

dependent files include text files, spreadsheets, images, audio, video, and XML files.
• Files that your app accesses by calling any of these functions: audioinfo,

audioread, csvread, daqread, dlmread, fileread, fopen, imfinfo,
importdata, imread, load, matfile, mmfileinfo, open, readtable, type,
VideoReader, xlsfinfo, xlsread, xmlread, and xslt.

Dependency analysis does not search for Java classes, .jar files, or files stored in a
scientific format such as NetCDF or HDF. Click Add files/folders in the Package Apps
dialog box to add these types of files manually.

See Also
matlab.codetools.requiredFilesAndProducts

20 Packaging GUIs as Apps

20-18

